The Role of the Hippocampal Vasculature in Vascular Cognitive Impairment and Dementia

海马脉管系统在血管性认知障碍和痴呆中的作用

基本信息

项目摘要

Chronic hypertension affects over 100 million adults in the US and is a major risk factor for cerebrovascular disease and vascular cognitive impairment (VCI). VCI involves impairment in multiple cognitive domains, often affecting the hippocampus and memory function leading to dementia. The hippocampus is a deep brain structure that is central to learning and memory and particularly susceptible to injury. Perfusion of the hippocampus is maintained by small hippocampal arterioles (HAs) that are critical to both basal- and activity-dependent changes in blood flow. Cognitive decline occurs more rapidly in the setting of chronic hypertension compared to normal aging; however, how chronic hypertension and aging affect HAs remains unclear and could contribute to VCI. The goal of this proposal is to investigate the novel role of HAs in healthy cognitive aging and VCI associated with chronic hypertension. Our preliminary and published data show that HAs were hyperconstricted and had impaired vasodilatory function in a rat model of chronic hypertension. Further, hippocampal perfusion was significantly reduced and memory impaired during chronic hypertension that occurred as a function of age. Importantly, HA dysfunction preceded these changes in perfusion and memory function, suggesting hypertension-induced memory decline is vascular in nature. Our central hypothesis is that chronic hypertension progressively decreases the vasodilatory function of HAs that reduces resting and activity-dependent changes in hippocampal perfusion, resulting in neuronal injury and VCI. Aim 1 will investigate HA endothelial and vascular smooth muscle function, including vasoconstrictive and vasodilatory pathways, in normotensive and hypertensive rats by studying isolated and pressurized HAs in vitro. Circulating potent vasoconstrictors (e.g. angiotensin II, endothelin-1, tumor necrosis factor alpha) that are elevated during chronic hypertension and cause oxidative stress and damage endothelium will be investigated as underlying mechanisms by which chronic hypertension causes hyperconstriction and impaired vasodilation of HAs. Aim 2 will investigate progressive changes in hippocampal perfusion and neurovascular coupling – the innate ability of the brain to increase local blood flow in response to neuronal activity – as it relates to neuronal function and memory in normotensive and hypertensive rats across the lifetime. We will determine the role of HAs in age- and hypertension-induced changes in hippocampal hemodynamics by investigating if therapeutically improving HA function prevents perfusion deficits, protects hippocampal neurons and slows cognitive decline to be similar to normal aging. This proposal will use both male and post-menopausal female rats to investigate sex differences in hypertension- induced HA dysfunction, and whether one sex is more susceptible to age- or hypertension-induced changes in hippocampal neurovascular function. The outcome of these studies will provide an understanding of the involvement of the hippocampal vasculature in memory decline associated with normal aging, and how this may be accelerated during chronic hypertension and contribute to VCI.
Chronic hypertension affects over 100 million adults in the US and is a major risk factor for cerebrovascular disease and vascular cognitive impairment (VCI). VCI involves impairment in multiple cognitive domains, often affecting the hippocampus and memory function leading to dementia. The hippocampus is a deep brain structure that is central to learning and memory and particularly susceptible to injury. Perfusion of the hippocampus is maintained by small hippocampal arterioles (HAs) that are critical to both basal- and activity-dependent changes in blood flow. Cognitive decline occurs more rapidly in the setting of chronic hypertension compared to normal aging; however, how chronic hypertension and aging affect HAs remains unclear and could contribute to VCI. The goal of this proposal is to investigate the novel role of HAs in healthy cognitive aging and VCI associated with chronic hypertension. Our preliminary and published data show that HAs were hyperconstricted and had impaired vasodilatory function in a rat model of chronic hypertension. Further, hippocampal perfusion was significantly reduced and memory impaired during chronic hypertension that occurred as a function of age. Importantly, HA dysfunction preceded these changes in perfusion and memory function, suggesting hypertension-induced memory decline is vascular in nature. Our central hypothesis is that chronic hypertension progressively decreases the vasodilatory function of HAs that reduces resting and activity-dependent changes in hippocampal perfusion, resulting in neuronal injury and VCI. Aim 1 will investigate HA endothelial and vascular smooth muscle function, including vasoconstrictive and vasodilatory pathways, in normotensive and hypertensive rats by studying isolated and pressurized HAs in vitro. Circulating potent vasoconstrictors (e.g. angiotensin II, endothelin-1, tumor necrosis factor alpha) that are elevated during chronic hypertension and cause oxidative stress and damage endothelium will be investigated as underlying mechanisms by which chronic hypertension causes hyperconstriction and impaired vasodilation of HAs. Aim 2 will investigate progressive changes in hippocampal perfusion and neurovascular coupling – the innate ability of the brain to increase local blood flow in response to neuronal activity – as it relates to neuronal function and memory in normotensive and hypertensive rats across the lifetime. We will determine the role of HAs in age- and hypertension-induced changes in hippocampal hemodynamics by investigating if therapeutically improving HA function prevents perfusion deficits, protects hippocampal neurons and slows cognitive decline to be similar to normal aging. This proposal will use both male and post-menopausal female rats to investigate sex differences in hypertension- induced HA dysfunction, and whether one sex is more susceptible to age- or hypertension-induced changes in hippocampal neurovascular function. The outcome of these studies will provide an understanding of the involvement of the hippocampal vasculature in memory decline associated with normal aging, and how this may be accelerated during chronic hypertension and contribute to VCI.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abbie C Chapman其他文献

Abbie C Chapman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abbie C Chapman', 18)}}的其他基金

The Role of the Hippocampal Vasculature in Vascular Cognitive Impairment and Dementia
海马脉管系统在血管性认知障碍和痴呆中的作用
  • 批准号:
    10448595
  • 财政年份:
    2022
  • 资助金额:
    $ 46.17万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 46.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了