MAPK signaling: gates, oscillators and circadian timing
MAPK 信号:门、振荡器和昼夜节律计时
基本信息
- 批准号:10596087
- 负责人:
- 金额:$ 46.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimal ModelBehaviorBehavioralBiological RhythmCell physiologyCellsCentral Nervous System DiseasesCircadian DysregulationCircadian RhythmsComplexCoupledCytoplasmDataDevelopmentDissociationEventGene MutationGenerationsGenetic TranscriptionGoalsHealthHourHumanHypothalamic structureKnock-outKnockout MiceLightMitogen-Activated Protein KinasesModelingMolecularMutant Strains MiceNatureOutputPathway interactionsPeriodicityPhasePhosphorylationPhotic StimulationPhysiologicalPhysiological ProcessesPhysiologyPlayPopulationProcessPropertyRegulationRoleScaffolding ProteinSeriesShapesSignal PathwaySignal TransductionStimulusSystemTestingTimeTransgenic MiceWorkbiochemical toolscell typecircadiancircadian pacemakercircadian regulationdesigninnovationinsightlight entrainmentlight gatedmutantneural circuitnovelprogramsresponsesuprachiasmatic nucleusvirtual
项目摘要
Project Summary/Abstract
Virtually every aspect of human physiology and behavior is modulated by an inherent 24 hour (circadian)
timing process. At the center of this clock timing system is the suprachiasmatic nucleus (SCN) of the
hypothalamus. A key feature of the SCN clock is the tight, time-of-day, dependent regulation of the MAPK
(p44/42 mitogen-activated protein kinase) pathway. Two examples of this phenomenon are the daily
oscillations in the activation state of the MAPK pathway, and the clock-gated regulation of the photic
responsiveness of the pathway. Importantly, the clock-generated, temporally-delimited, regulation of MAPK
signaling appears to play a central role in SCN timing and entrainment. Further, the daily gating of MAPK
signaling may be an underlying design principal of all oscillator populations, and as such, MAPK rhythms
could have profound and far-reaching effects on a range of physiological processes. Given these implications,
it is surprising that we still know relatively little about the cellular mechanisms and synaptic circuits that
confer circadian control over MAPK activity. Here, we hypothesize that the circadian regulation of MAPK
signaling is an inherent (cell autonomous) feature of SCN cellular oscillators and that this MAPK rhythm is a key
mechanistic building-block by which the circadian clock modulates both basic and complex physiological states. To test
this hypothesis, we propose the following set of experimental goals. In Aim 1, we will identify the cellular and
network properties of the SCN that give rise to the rhythmic regulation of the MAPK pathway. To this end,
we will, A) Determine whether MAPK rhythms are cell autonomous or whether they result from an
intercellular SCN network, and B) Determine the intracellular signaling events that generate MAPK activity
rhythms. In Aim 2 we propose to characterize the molecular, cellular and systems-based mechanisms by which
the SCN clock gates light-evoked MAPK pathway activation. To address this largely unexplored phenomenon,
we will, A) determine when and how the molecular gate opens, and B), test whether the cytoplasmic ERK
scaffold protein PEA-15 serves as the principal circadian gate on MAPK signaling. Of note, we recently
identified PEA-15 as a modulator of MAPK signaling in the SCN, and its capacity to dynamically regulate ERK
signaling makes it an attractive candidate for the gating of MAPK signaling. In Aim 3 we propose to employ a
selective targeting approach to transgenically disrupt MAPK signaling within the SCN core and shell regions
to address the roles of MAPK signaling in A) the generation of circadian rhythms, and B) the entrainment of
the circadian clock. Further, conditional PEA-15 KO and point mutant PEA-15 transgenic mouse lines will be
used to test a model in which PEA-15 phosphorylation leads to rapid ERK dissociation, which we posit to be a
key step in the initiation of light-evoked phase-shifting. Together, these data will provide fundamental new
insights into the relationship between MAPK signaling and the circadian clock, and point to potential ways in
which the dysregulation of clock-gated MAPK signaling could contribute to disorders of the CNS.
项目摘要/摘要
实际上,人类生理和行为的每一个方面都受到固有的24小时(昼夜节律)的调节。
计时过程。在这个时钟计时系统的中心是视交叉上核。
下丘脑。SCN时钟的一个关键特征是对MAPK的严格、实时、依赖的调节
(p44/42丝裂原活化蛋白激酶)途径。这种现象的两个例子是《每日新闻》
MAPK通路激活状态的振荡和光的时钟门控调节
通路的响应性。重要的是,时钟产生的、时间分隔的MAPK调节
信号似乎在SCN的计时和夹带中起着核心作用。此外,MAPK的日常门禁
信令可能是所有振荡器种群的基本设计原则,因此,MAPK节奏
可能会对一系列生理过程产生深远的影响。考虑到这些影响,
令人惊讶的是,我们对细胞机制和突触电路的了解仍然相对较少
对MAPK活性进行昼夜节律控制。在这里,我们假设MAPK的昼夜调节
信号是SCN细胞振荡器固有的(细胞自主)特征,这种MAPK节奏是一个关键
生物钟调节基本和复杂生理状态的机械积木。为了测试
在这一假设下,我们提出了以下一套实验目标。在目标1中,我们将识别细胞和
引起MAPK途径节律性调节的SCN的网络特性。为此,
我们将,A)确定MAPK节律是否是细胞自主的,或者它们是否源于
细胞间SCN网络,以及B)确定产生MAPK活性的细胞内信号事件
节奏。在目标2中,我们建议描述基于分子、细胞和系统的机制,通过这些机制
SCN时钟选通光诱导的MAPK通路激活。为了解决这一在很大程度上未被探索的现象,
我们将,A)确定分子门何时和如何打开,以及B),测试细胞质ERK
支架蛋白PEA-15是MAPK信号的主要昼夜节律门。值得注意的是,我们最近
确认PEA-15是SCN中MAPK信号的调制器,以及它动态调节ERK的能力
信号转导使其成为MAPK信号门控的一个有吸引力的候选者。在目标3中,我们建议采用
选择性靶向方法在SCN核心区和壳区内转基因干扰MAPK信号
为了解决MAPK信号在A)昼夜节律的产生和B)携带
生物钟。此外,有条件的PEA-15 KO和点突变PEA-15转基因小鼠株系将
用于测试PEA-15磷酸化导致ERK快速解离的模型,我们假设这是一种
启动光致相移的关键步骤。总而言之,这些数据将提供基本的新
对MAPK信号和生物钟之间的关系的洞察,并指出了
其中,时钟门控MAPK信号的失调可能导致中枢神经系统的紊乱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARI RENE HOYT其他文献
KARI RENE HOYT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARI RENE HOYT', 18)}}的其他基金
Alzheimer's disease pathogenesis and the desynchronization of cortico-limbic circadian rhythms
阿尔茨海默病的发病机制和皮质边缘昼夜节律的不同步
- 批准号:
10221593 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
MAPK signaling: gates, oscillators and circadian timing
MAPK 信号:门、振荡器和昼夜节律计时
- 批准号:
10133091 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
Alzheimer's disease pathogenesis and the desynchronization of cortico-limbic circadian rhythms
阿尔茨海默病的发病机制和皮质边缘昼夜节律的不同步
- 批准号:
10398203 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
MAPK signaling: gates, oscillators and circadian timing
MAPK 信号:门、振荡器和昼夜节律计时
- 批准号:
9981221 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
Alzheimer's disease pathogenesis and the desynchronization of cortico-limbic circadian rhythms
阿尔茨海默病的发病机制和皮质边缘昼夜节律的不同步
- 批准号:
10612391 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
Alzheimer's disease pathogenesis and the desynchronization of cortico-limbic circadian rhythms
阿尔茨海默病的发病机制和皮质边缘昼夜节律的不同步
- 批准号:
10053947 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
MAPK signaling: gates, oscillators and circadian timing
MAPK 信号:门、振荡器和昼夜节律计时
- 批准号:
10375498 - 财政年份:2020
- 资助金额:
$ 46.68万 - 项目类别:
Therapeutic potential of ARE-mediated gene expression in Huntington's disease
ARE 介导的基因表达在亨廷顿病中的治疗潜力
- 批准号:
7981119 - 财政年份:2010
- 资助金额:
$ 46.68万 - 项目类别:
Excitotoxic Signaling in HD Transgenic Neurons
HD 转基因神经元中的兴奋毒性信号传导
- 批准号:
6685929 - 财政年份:2001
- 资助金额:
$ 46.68万 - 项目类别:
Excitotoxic Signaling in HD Transgenic Neurons
HD 转基因神经元中的兴奋毒性信号传导
- 批准号:
6434523 - 财政年份:2001
- 资助金额:
$ 46.68万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.68万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 46.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists