Integrative genomic and geospatial analysis of insurance claim, biobank and GWAS summary statistics for complex traits
保险索赔的综合基因组和地理空间分析、生物库和复杂性状的 GWAS 汇总统计
基本信息
- 批准号:10595104
- 负责人:
- 金额:$ 28.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-20 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Air PollutionAlgorithmsBiologyCharacteristicsCodeCommunitiesComplexComputer softwareDataData AggregationData SetDatabasesDiabetes MellitusDiseaseEnvironmentEnvironmental EpidemiologyEnvironmental ExposureEnvironmental Risk FactorEnvironmental WindEtiologyExposure toFamilyGene FrequencyGeneticGenetic ModelsGenetic studyGenome ComponentsGenomicsHeritabilityHeterogeneityHumanIndividualInsuranceInternationalJointsKnowledgeLicensingLipidsLocationLong-Term EffectsMeta-AnalysisMethodsModelingNeighborhoodsNon-Insulin-Dependent Diabetes MellitusNuclear FamilyParticipantPatient Self-ReportPhenotypePlasmaPollutionPopulation ControlPrivacyPrivatizationProxyPublic HealthRegression AnalysisResearchResource SharingSamplingSmokingSpeedStatistical MethodsStructureTestingTherapeutic InterventionTrans-Omics for Precision MedicineTwin Multiple BirthWorkaddictionbiobankbiomedical informaticscohortdesigndrinkinggene environment interactiongenetic architecturegenetic associationgenetic risk factorgenome wide association studygenome-widehuman diseaseimprovedinstrumentinsurance claimsmulti-ethnicnovelnovel therapeuticsphenomepulmonary functionrisk predictionsociodemographicsstatisticstherapeutically effectivetooltraitwhole genome
项目摘要
ABSTRACT
Human complex traits are jointly influenced by genetic and environmental risk factors, whose exact
contributions are often subject to extensive debate. Detailed environmental risk factors are not often available,
which makes it hard to jointly assess the genetic and environmental contributions. Yet, the emergence of large-
scale national biobanks as well international genetic studies offers a great opportunity to make up for this
knowledge gap. In particular, as study participants come from diverse locations, geospatial information of the
study participants can be used as a proxy for environmental exposure. Models that incorporate geospatial
information of study participants will lead to improved power for association analysis and more accurate
heritability estimates. In this application, we propose to develop a Spatial MIxed Linear Effect model (SMILE)
for improved association analysis and heritability estimation and Spatial Meta-Analysis Regression Test
(SMART) for more powerful meta-analyses of genetic association studies. We will apply them to UK Biobank,
MarketScan insurance billing database, TOPMed sequence data, and various large consortia studies on
smoking/drinking addictions, lipids levels, and diabetes. To achieve the proposed research aims, we assembled
a strong research team with complementary expertise from statistical genetics, addiction genetics, lung function
genetics, biomedical informatics, and environmental epidemiology. Methods and tools developed from this
study will open up new avenues for analyzing national biobanks such as UK Biobank and All of Us cohorts, and
global consortium studies. The results from this study will help elucidate the genetic architecture of complex
traits with significant
摘要
人类复杂的特征受到遗传和环境风险因素的共同影响,其确切的
捐款往往引起广泛的辩论。详细的环境风险因素通常无法获得,
这使得很难共同评估遗传和环境的贡献。然而,大规模的
大规模的国家生物库以及国际遗传研究提供了一个很好的机会来弥补这一点
知识差距。特别是,由于研究参与者来自不同地点,因此地理空间信息
研究参与者可用作环境暴露的代表。纳入地理空间的模型
研究参与者的信息将提高关联分析的能力,
遗传性估计。在这个应用中,我们提出了一个空间混合线性效应模型(SMILE)
用于改进关联分析和遗传力估计以及空间元分析回归检验
(SMART)进行更强大的遗传关联研究荟萃分析。我们将把它们应用到英国生物银行,
MarketScan保险账单数据库,TOPMed序列数据,以及各种大型财团对
吸烟/饮酒成瘾、血脂水平和糖尿病。为了达到研究目的,我们组织了
一个强大的研究团队,拥有统计遗传学,成瘾遗传学,肺功能等互补专业知识
遗传学、生物医学信息学和环境流行病学。由此开发的方法和工具
这项研究将为分析国家生物库开辟新的途径,如英国生物库和我们所有人的队列,
全球联合研究。这项研究的结果将有助于阐明复杂的遗传结构
具有显著
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bibo Jiang其他文献
Bibo Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bibo Jiang', 18)}}的其他基金
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
- 批准号:
10445464 - 财政年份:2022
- 资助金额:
$ 28.8万 - 项目类别:
Methods to unveil sex-specific genetic architecture in trans-ancestry meta-analysis
在跨祖先荟萃分析中揭示性别特异性遗传结构的方法
- 批准号:
10681351 - 财政年份:2022
- 资助金额:
$ 28.8万 - 项目类别:
相似海外基金
REU Site: Algorithms and Optimization for Sustainability and Biology
REU 网站:可持续性和生物学的算法和优化
- 批准号:
2243010 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
- 批准号:
EP/V047469/1 - 财政年份:2021
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2020
- 资助金额:
$ 28.8万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2019
- 资助金额:
$ 28.8万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning Algorithms for Actionable Knowledge Discovery in Synthetic Biology
合成生物学中可操作知识发现的机器学习算法
- 批准号:
2132169 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Studentship
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1704552 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Discovery Grants Program - Individual
Workshop on Future Directions for Algorithms in Biology
生物学算法未来方向研讨会
- 批准号:
1748493 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1703489 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant