Data Science Core
数据科学核心
基本信息
- 批准号:10595073
- 负责人:
- 金额:$ 14.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-21 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgreementAlgorithmsApplications GrantsBiologicalBiologyBiometryClinicalClinical ResearchCloud ComputingCollaborationsCommunicationCommunitiesComputer AnalysisComputersConsultationsDataData AnalysesData ScienceData Science CoreData ScientistData SetDevelopmentEnvironmentEpidemiologistEpidemiologyEventFacultyFosteringGenesGoalsGrantHourImage AnalysisInstitutionLaboratoriesLaboratory ResearchLaboratory ScientistsLearningModelingMonitorMultiomic DataOutcomeOutputPathway AnalysisPathway interactionsPeer ReviewPhasePlayProcessProductivityReproducibilityResearchResearch ActivityResearch DesignResearch PersonnelResearch SupportRoleScienceScientistServicesStatistical Data InterpretationStatistical MethodsStructureSystems BiologyTrainingTuberculosisVaccinesVisualizationVocabularyWagesWorkassay developmentbioinformatics toolcommunity buildingcomplex datacomputerized data processingcomputing resourcescostdata integrationdata managementdata toolsdata visualizationexperienceimprovedindustry partnerliteracymathematical modelmembermultidimensional datamultidisciplinarynovelpandemic diseasepower analysissingle cell analysissoftware developmentstructural biologysuccesssymposiumtooltuberculosis diagnosticsvirtual
项目摘要
PROJECT SUMMARY (DATA SCIENCE CORE)
The Data Science Core (DSC) aims to support research efforts to control the TB pandemic through
expansion and enhancement of TB-focused data science. Data science plays an important role in a broad
spectrum of activities throughout the iterative cycles of productive research, including study design, assay
development, data processing, statistical analysis, data visualization, mathematical modeling, and
communication of findings. The DSC aims to enhance data science for TB by building initiatives to improve data
science literacy and catalyze cross-disciplinary collaborations between TRAC researchers and New-to-TB data
scientists (Aim 1), as well as to directly enable increased utilization of data science approaches in TB research
(Aim 2). Aim 1 objectives will be achieved through virtual trainings paired with office hour consultations, as well
as the organization of annual semi-structured, TB-focused Hackweeks and meet-up events. The DSC will
accomplish Aim 2 objectives by providing hands-on data science assistance to TRAC researchers in the form of
targeted consultations, limited-scope catalytic analyses, and broader collaborative efforts. We will support these
activities by directly supporting partial salary of data scientists at FHCRC and SCRI in addition to the co-directors.
New-to-TB data science collaboration will also be encouraged by a diverse group of DSC Faculty Partners—
data science experts who have extensive experience studying TB. Faculty Partners have agreed to provide their
analytical expertise for collaborations and consultations in subjects that include stochastic modeling, software
development, biostatistics, image analysis, lab data management, structural biology, systems biology, and
epidemiology. An additional Industry Partner will help subsidize cloud-computing costs for this work and help
train TRAC researchers on how and when to utilize cloud-computing resources. Together, the combination of
training, community building, and hands-on data science activities that the DSC will establish will work in tandem
with the other TRAC Cores to directly amplify TB science, catalyze new collaboration on TB-related questions,
and expand the number of TB scientists in our community.
项目总结(数据科学核心)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuyi Ma其他文献
Shuyi Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuyi Ma', 18)}}的其他基金
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
- 批准号:
10294557 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Transcriptome-driven inference of adverse drug interactions
转录组驱动的药物不良相互作用的推断
- 批准号:
10541237 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
- 批准号:
10458724 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
- 批准号:
10672236 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Transcriptome-driven inference of adverse drug interactions
转录组驱动的药物不良相互作用的推断
- 批准号:
10322356 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
Transcriptome-driven inference of adverse drug interactions
转录组驱动的药物不良相互作用的推断
- 批准号:
9880239 - 财政年份:2021
- 资助金额:
$ 14.65万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 14.65万 - 项目类别:
Continuing Grant














{{item.name}}会员




