Transcriptome-driven inference of adverse drug interactions

转录组驱动的药物不良相互作用的推断

基本信息

  • 批准号:
    9880239
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-02 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Ototoxicity is a debilitating side effect of over 150 medications, many of which are prescribed as part of multi- drug regimens to treat a broad range of conditions including cancer and recalcitrant infections. Adverse drug- drug interactions (DDIs) that potentiate ototoxicity complicate the implementation of multi-drug regimens, particularly to treat multiple concurrent conditions. In most cases, DDIs are currently detected only after the drugs are on the market, so effective preclinical methods to identify potential adverse interactions would facilitate safer co-prescriptions. The astronomical number of combinations renders measuring all possible drug interactions infeasible, so predicting how ototoxic drugs interact from data of individual compounds is necessary. While the current understanding of mechanisms underlying ototoxicity of specific drug classes has helped to explain clinical observations of specific adverse ototoxicity DDIs, and aided rational design of candidate otoprotective adjuvants, this strategy cannot anticipate adverse ototoxicity DDIs or develop otoprotectants for other lesser studied drug classes and first-in-class drugs under clinical development. To survey more broadly for potential ototoxicity DDIs, we will adapt INDIGO (Inferring Drug Interactions using chemo-Genomics and Orthology), a machine learning tool that currently can predict synergy/antagonism of antimicrobial drug activity in multiple bacterial species without requiring specific drug target information. We hypothesize that we can harness the underlying approach to predict potentially adverse (synergistic) or protective (antagonistic) ototoxic DDIs in humans, by building an “INDIGO-Tox” model based on data generated from an appropriate animal system. We will measure transcriptional profiles elicited by 15 drugs known to convey ototoxicity or otoprotection, as well as corresponding pairwise ototoxicity DDI phenotypes in zebrafish, a well-established in vivo model system for studying ototoxicity. We will use these data to train INDIGO-Tox model. We will then use INDIGO-Tox to predict DDIs between 10 additional drugs, using their zebrafish transcriptome response profiles as input data. We will validate predictions in zebrafish, and will test translation of top validated predictions in a well-established mouse ex vivo model of ototoxicity. We will also use the model to generate predictions for novel genes that influence ototoxicity, which we will then test in zebrafish. Successful completion will generate hypotheses for translation into humans, facilitate model expansion to assessing possible ototoxic interactions for a broader library of drugs, and will establish a path to predict interactions between ototoxicity and other organ toxicities.
摘要 耳毒性是超过150种药物的一种使人衰弱的副作用,其中许多药物是作为多种药物的一部分处方的。 治疗包括癌症和寄生虫感染在内的广泛疾病的药物方案。不良药物- 增强耳毒性的药物相互作用(DDI)使多药物方案的实施复杂化, 特别是治疗多种并发病症。在大多数情况下,DDI目前仅在 药物已经上市,因此,有效的临床前方法来识别潜在的不良相互作用, 促进更安全的联合处方。组合的天文数字使得可以测量所有可能的药物 相互作用是不可行的,因此从单个化合物的数据预测耳毒性药物如何相互作用是不可行的。 必要虽然目前对特定药物类别耳毒性机制的理解, 有助于解释特定不良耳毒性DDI的临床观察结果,并有助于合理设计 候选耳保护佐剂,该策略不能预期不良耳毒性DDI或开发 用于其他较少研究的药物类别和临床开发中的一流药物的耳保护剂。到 更广泛地调查潜在的耳毒性DDI,我们将采用靛蓝(使用 chemo-Genomics and Orthology),这是一种机器学习工具,目前可以预测 在不需要特定的药物靶标信息的情况下,在多种细菌物种中的抗微生物药物活性。我们 假设我们可以利用潜在的方法来预测潜在的不利(协同)或 通过基于数据构建“INDIGO-Tox”模型,在人体中保护(拮抗)耳毒性DDI 由适当的动物系统产生。我们将测量15种药物引起的转录谱 已知传递耳毒性或耳保护,以及相应的成对耳毒性DDI表型, 斑马鱼,一种用于研究耳毒性的成熟体内模型系统。我们将用这些数据来训练 INDIGO-Tox模型。然后,我们将使用INDIGO-Tox来预测10种其他药物之间的DDI, 斑马鱼转录组响应谱作为输入数据。我们将在斑马鱼中验证预测, 在完善的小鼠离体耳毒性模型中最有效的预测的翻译。我们还将 使用该模型来预测影响耳毒性的新基因,然后我们将在 斑马鱼成功完成将产生翻译成人类的假设,促进模型 扩展到评估可能的耳毒性相互作用,以获得更广泛的药物库,并将建立一种途径, 预测耳毒性和其他器官毒性之间的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuyi Ma其他文献

Shuyi Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuyi Ma', 18)}}的其他基金

Data Science Core
数据科学核心
  • 批准号:
    10595073
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10425948
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
  • 批准号:
    10294557
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
Transcriptome-driven inference of adverse drug interactions
转录组驱动的药物不良相互作用的推断
  • 批准号:
    10541237
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
  • 批准号:
    10458724
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
Network Dissection of Host-Pathogen Interactions in Mycobacterium tuberculosis Infection
结核分枝杆菌感染中宿主-病原体相互作用的网络剖析
  • 批准号:
    10672236
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
Transcriptome-driven inference of adverse drug interactions
转录组驱动的药物不良相互作用的推断
  • 批准号:
    10322356
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了