Cellular Mechanisms of Behavioral Development in the Vestibulospinal Circuit
前庭脊髓回路行为发展的细胞机制
基本信息
- 批准号:10594990
- 负责人:
- 金额:$ 2.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-10-21
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAfferent NeuronsAgeAnatomyAnimal BehaviorAnimalsAxonBayesian MethodBehaviorBehavioralBehavioral MechanismsBiological AssayBiomechanicsBirthBrainBrain StemCalciumChildhoodComputer ModelsData SetDevelopmentDiseaseEquilibriumFailureFishesFunctional disorderGeneticGoalsHealthHumanImageImpaired healthImpairmentIndividualKnowledgeLarvaLifeLinkMammalsMeasuresMissionModelingMonitorMorphologyMovementMusculoskeletal EquilibriumNervous SystemNeurodevelopmental DisorderNeuronsOpticsOutputPathologyPlayPopulationPostural adjustmentsPosturePropertyPublic HealthReflex actionResearchResearch ProposalsResolutionRoleRotationSensorySpinal CordSwimmingSymptomsSynapsesTestingTimeTransgenic OrganismsTranslatingUnited States National Institutes of HealthVertebratesWorkZebrafishassociated symptomcourse developmentdevelopmental diseasedisabling symptomexperienceexperimental studyimprovedin vivoinsightloss of functionmature animalneuralneural circuitneurodevelopmentneuromechanismneuronal circuitryoptogeneticspostnatalposture instabilityresponsesensorimotor systemserial imagingtheoriestwo-photonvestibular reflex
项目摘要
PROJECT SUMMARY
After birth, animal behaviors mature as neural circuits refine. While the complexity of most neural
circuits and their associated behaviors has meant the two are often considered separately, these phenomena
are inextricably linked. Revealing how mechanisms of circuit refinement constrain behavioral improvement is
critical to understanding brain development in both healthy and diseased states.
Balance control is a vital sensorimotor behavior that develops postnatally according to evolutionarily
conserved principles across vertebrates. The vestibulospinal circuits that maintain and correct posture also
experience developmental refinement, but it is unclear how observed functional and morphological changes
translate into improved posture control. The postural reflex circuit in larval zebrafish is an ideal model in which
to study how cellular mechanisms of development may instantiate behavioral improvement. As simple
vertebrates, zebrafish have a vestibulospinal reflex circuit that functions similarly to mammals. However, the
zebrafish circuit consists of orders of magnitude fewer neurons. Our lab's efforts have established genetic and
optical means to measure and manipulate neural activity non-invasively with cellular resolution across
development. Furthermore, our lab has defined how postural behaviors improve with age in larval zebrafish.
We have developed a control theoretic framework to understand the biomechanical underpinnings of this
behavioral improvement, and to constrain the neural computations responsible for behavior.
In my preliminary work, I have identified a small set of vestibulospinal neurons as a nexus of postural
development in the larval fish. The goal of this research proposal is twofold: (1) to leverage the zebrafish
vestibulospinal circuit to elucidate cellular mechanisms of circuit development using in vivo longitudinal
imaging, and (2) to model how developing neural circuits permit concurrent behavioral improvement. In Aim 1, I
will determine how sensory responses in individual vestibulospinal neurons change longitudinally across
development. In Aim 2, I will identify how downstream connectivity of vestibulospinal neurons changes both
anatomically and functionally during development. In Aim 3, I will adopt a computational approach to relate the
encoding and decoding capacity of vestibulospinal activity across development to improvement in postural
behaviors. Through the proposed work, I will define hallmarks of sensorimotor circuit development at a cellular
level and relate them to their behavioral consequences. When complete, this work will define how neural circuit
development gives rise to behavioral improvement.
项目总结
出生后,动物的行为随着神经回路的完善而成熟。而大多数神经的复杂性
电路及其相关行为意味着两者通常被分开考虑,这些现象
有着千丝万缕的联系。揭示了电路优化机制如何限制行为改进
对于了解健康和疾病状态下的大脑发育至关重要。
平衡控制是一种重要的感觉运动行为,它是在出生后根据进化过程发展起来的
脊椎动物的守恒原则。维持和纠正姿势的前庭脊髓回路也
经历发育完善,但尚不清楚观察到的功能和形态变化
转化为更好的姿势控制。斑马鱼幼体的姿势反射回路是一种理想的模型
研究发育的细胞机制如何实例化行为改善。一样简单
脊椎动物斑马鱼的前庭脊髓反射回路的功能与哺乳动物相似。然而,
斑马鱼环路由数量较少的神经元组成。我们实验室的努力已经确定了基因和
光学手段,非侵入性地测量和操纵神经活动,细胞分辨率跨
发展。此外,我们的实验室已经确定了斑马鱼幼体的姿势行为是如何随着年龄的增长而改善的。
我们开发了一个控制理论框架来理解其生物力学基础。
行为改善,并限制负责行为的神经计算。
在我的初步工作中,我已经确定了一小部分前庭脊髓神经元是
幼鱼的发育。这项研究提案的目的有两个:(1)利用斑马鱼
用活体纵向研究前庭脊髓回路发育的细胞机制
成像,以及(2)对发育中的神经回路如何允许同时改善行为进行建模。在目标1中,我
将决定单个前庭脊髓神经元的感觉反应是如何纵向变化的
发展。在目标2中,我将确定前庭脊髓神经元的下游连接如何改变
在发育过程中从解剖和功能上讲。在目标3中,我将采用计算方法将
从发育到姿势改善的前庭脊髓活动的编码和解码能力
行为。通过这项拟议的工作,我将在细胞中定义感觉运动电路发展的特征
并将其与其行为后果联系起来。完成后,这项工作将定义神经回路如何
发展会带来行为的改善。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tilt in Place Microscopy: a Simple, Low-Cost Solution to Image Neural Responses to Body Rotations.
- DOI:10.1523/jneurosci.1736-22.2022
- 发表时间:2023-02-08
- 期刊:
- 影响因子:5.3
- 作者:Hamling, Kyla R.;Zhu, Yunlu;Auer, Franziska;Schoppik, David
- 通讯作者:Schoppik, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyla Hamling其他文献
Kyla Hamling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyla Hamling', 18)}}的其他基金
Cellular Mechanisms of Behavioral Development in the Vestibulospinal Circuit
前庭脊髓回路行为发展的细胞机制
- 批准号:
10331006 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 2.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 2.8万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 2.8万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




