NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
基本信息
- 批准号:10594969
- 负责人:
- 金额:$ 44.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmino Acid SequenceAmino AcidsBiochemicalBiological ModelsBiophysicsCOSYCell NucleusChemicalsCommunitiesComplementComputational TechniqueComputer softwareCouplingCrowdingCryoelectron MicroscopyDataDimensionsDrug DesignEnvironmentFingerprintFrequenciesG-Protein-Coupled ReceptorsGoalsHMQCHourInvestigationIsotope LabelingIsotopesLabelMachine LearningMainstreamingMathematicsMeasurementMeasuresMedical ResearchMethodsMissionModernizationMolecular WeightNMR SpectroscopyNuclearNuclear Magnetic ResonanceOutcomePatternPhysiologic pulsePositioning AttributeProtein DynamicsProtein GlycosylationProteinsPyruvateRelaxationResearchResearch ProposalsResolutionSamplingSchemeScienceShapesSignal TransductionSpecialistSpectrum AnalysisStructureSystemTOCSYTestingTextbooksTherapeuticTherapeutic StudiesTimeTrainingVertebral columnX-Ray Crystallographyartificial neural networkautomated analysiscontrol theorycostdesignexperimental studyinnovationinsightinstrumentmethyl groupnext generationnonlinear regressionnovelnovel strategiesnuclear powerprotein functionquantumradio frequencyreconstructiontherapeutic development
项目摘要
Project summary
Nuclear magnetic resonance (NMR) spectroscopy is essential for the study structure, dynamics and function of
proteins in near-native conditions. NMR studies have vital implications for therapeutic development. However,
as the number of amino acids in the protein increases, NMR signals decay (relax) faster, yielding lower
sensitivity and resolution, while the spectrum becomes more crowded. In these cases it is challenging to match
observed signals to specific nuclei in the protein (called `resonance assignment') in order to meaningfully
interpret NMR data. The overarching goal of our research is to push the boundaries of NMR enabling valuable
insight about the dynamics and functions of currently intractable proteins. The objective of this project is to
design an NMR platform consisting of coordinated, next-generation biochemical, biophysical, mathematical,
and computational techniques. Our platform is built around an original approach to NMR spectroscopy in which
new information about the local environment of each nucleus is encoded in the shape and pattern of its NMR
signal. The rationale is that these patterns are a `fingerprint' – an intricate and unique signature that encodes
key information about which atom is responsible for each resonance peak in the NMR spectrum. We will
design and realize fingerprint patterns using two innovative approaches: 1) biochemically, by selectively
introducing NMR-active isotopes into carefully chosen positions in the protein samples, and biophysically, and
2) by using specialized radiofrequency pulses to accurately control the quantum interactions that determine the
NMR spectrum. The resulting fingerprints will be decoded using established algorithmic structures from
machine learning, notably artificial neural networks. This will facilitate automated analyses that are accessible
to non-NMR specialists. Our approach to spectroscopy holds promise in the study of therapeutically important
proteins expressed in eukaryotic expression systems (e.g. G-protein coupled receptors and glycosylated
proteins). Current NMR data from such proteins shows clear dynamics and interactions with other proteins, but
cannot yet be properly interpreted because of the difficulty of relating each NMR peak to an amino acid in the
protein sequence. Our platform will deliver two significant outcomes: 1) NMR resonance assignment for
meaningful analyses of previously intractable systems. 2) Enable non-NMR specialists, to easily proceed from
expressing their protein sample to using NMR to study dynamics and interactions via assigned spectra. This
will have a positive impact on protein science and medical research. To support our mission we have
assembled a team of leading experts to test our platform with their own protein systems.
项目概要
核磁共振 (NMR) 光谱对于研究结构、动力学和功能至关重要
接近天然条件下的蛋白质。核磁共振研究对治疗开发具有重要意义。然而,
随着蛋白质中氨基酸数量的增加,NMR 信号衰减(松弛)得更快,产量更低
灵敏度和分辨率,而光谱变得更加拥挤。在这些情况下,匹配是具有挑战性的
观察到蛋白质中特定核的信号(称为“共振分配”),以便有意义地
解释 NMR 数据。我们研究的首要目标是突破 NMR 的界限,实现有价值的
关于当前棘手蛋白质的动力学和功能的见解。该项目的目标是
设计一个由协调的下一代生物化学、生物物理、数学、
和计算技术。我们的平台是围绕核磁共振波谱的原始方法构建的,其中
有关每个原子核局部环境的新信息被编码在其 NMR 的形状和模式中
信号。基本原理是这些模式是“指纹”——一种复杂而独特的签名,用于编码
关于核磁共振谱中每个共振峰由哪个原子负责的关键信息。我们将
使用两种创新方法设计和实现指纹图案:1)生物化学,选择性地
将 NMR 活性同位素引入蛋白质样品中精心选择的位置,并通过生物物理方法,
2)通过使用专门的射频脉冲来精确控制决定量子相互作用的量子相互作用
核磁共振谱。生成的指纹将使用已建立的算法结构进行解码
机器学习,特别是人工神经网络。这将促进可访问的自动化分析
非 NMR 专家。我们的光谱学方法有望在治疗上重要的研究中发挥作用
在真核表达系统中表达的蛋白质(例如 G 蛋白偶联受体和糖基化
蛋白质)。目前此类蛋白质的 NMR 数据显示出清晰的动力学以及与其他蛋白质的相互作用,但是
由于很难将每个 NMR 峰与氨基酸中的氨基酸相关联,因此尚无法正确解释
蛋白质序列。我们的平台将带来两个重要成果:1) NMR 共振分配
对以前棘手的系统进行有意义的分析。 2) 使非 NMR 专家能够轻松地从
使用 NMR 表达蛋白质样品,通过指定的光谱研究动力学和相互作用。这
将对蛋白质科学和医学研究产生积极影响。为了支持我们的使命,我们有
组建了一支领先的专家团队,用他们自己的蛋白质系统测试我们的平台。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening.
- DOI:10.1016/j.isci.2020.102021
- 发表时间:2021-02-19
- 期刊:
- 影响因子:5.8
- 作者:Gorgulla C;Padmanabha Das KM;Leigh KE;Cespugli M;Fischer PD;Wang ZF;Tesseyre G;Pandita S;Shnapir A;Calderaio A;Gechev M;Rose A;Lewis N;Hutcheson C;Yaffe E;Luxenburg R;Herce HD;Durmaz V;Halazonetis TD;Fackeldey K;Patten JJ;Chuprina A;Dziuba I;Plekhova A;Moroz Y;Radchenko D;Tarkhanova O;Yavnyuk I;Gruber C;Yust R;Payne D;Näär AM;Namchuk MN;Davey RA;Wagner G;Kinney J;Arthanari H
- 通讯作者:Arthanari H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haribabu Arthanari其他文献
Haribabu Arthanari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haribabu Arthanari', 18)}}的其他基金
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10591671 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10377588 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10392661 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10387787 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10159285 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
Novel targets to regulate NF-kB & SREBP activity: an approach to combat diabetes
调节 NF-kB 的新靶点
- 批准号:
8150351 - 财政年份:2010
- 资助金额:
$ 44.57万 - 项目类别:
Novel targets to regulate NF-kB & SREBP activity: an approach to combat diabetes
调节 NF-kB 的新靶点
- 批准号:
8318211 - 财政年份:2010
- 资助金额:
$ 44.57万 - 项目类别:
Novel targets in the regulation of NF-kB and SREBP activity: A two-faceted approa
NF-kB 和 SREBP 活性调节的新目标:两方面的方法
- 批准号:
8045247 - 财政年份:2010
- 资助金额:
$ 44.57万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant