Novel targets to regulate NF-kB & SREBP activity: an approach to combat diabetes
调节 NF-kB 的新靶点
基本信息
- 批准号:8150351
- 负责人:
- 金额:$ 15.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:3T3-L1 CellsAdipocytesAffectBindingBinding ProteinsBiogenesisBiological AssayBloodBrown FatCaenorhabditis elegansCell Culture TechniquesCellsCenters for Disease Control and Prevention (U.S.)ChemicalsCholesterolComplement Factor BComplexCritical PathwaysDiabetes MellitusElementsEpidemicFamilyFluorescence PolarizationFutureGene ActivationGene ExpressionGene Expression RegulationGene TargetingGenesGenetic TranscriptionHomeostasisIn VitroIndiumInflammatoryInsulinLifeLipidsMED15Mediator of activation proteinMessenger RNAMetabolicMetabolic PathwayMetabolic stressMetabolismMethodsMicroRNAsMitochondriaModelingMolecularMusNF-kappa BNMR SpectroscopyNuclearOutcomePathway interactionsPlayRecruitment ActivityRegulationRegulatory ElementRespirationRoleSolutionsSterolsStructureTestingTherapeutic InterventionTrans-ActivatorsTransactivationTranscription CoactivatorTranscriptional RegulationTriglyceridesUnited Statesadipocyte differentiationbasecellular imagingcombatdiabeticglucose metabolismhigh throughput screeningin vivoinhibitor/antagonistlipid biosynthesislipid metabolismnovelp65protein expressionpublic health relevancesmall moleculetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Diabetes has become an increasingly serious epidemic in recent years, with CDC estimates of 24 million people directly affected in the United States alone. There are two interconnected pathways that are critical in the onset of diabetes. They are the nutritionally-derived metabolic pathway, and the pro-inflammatory pathway. Aberrant activation of both the above pathways is commonly found to be associated with the pathological progression of diabetes. We have identified two novel transcription activator-Mediator interactions that control and regulate the metabolic and inflammatory pathway. The two transcription activators, NF-:B (Nuclear Factor- :B) and SREBP (Sterol Regulatory Element-Binding Protein), play significant roles in the onset and progression of diabetes. Both these factors have been shown to functionally interact with a co-activator known as the Activator Recruited Co-factor(ARC)/Mediator Complex. NF-:B and SREBP are critical in regulating the expression of a number of genes involved in the onset of diabetes. We propose to target the activator-Mediator interaction of these two transcription factors (SREBP and NF-:B) with small molecular effectors, thus inhibiting gene activation. The activator-Mediator interactions of SREBP and NF-:B represent novel targets because their inhibition would affect the most downstream element in their activation pathways. We will determine the structure of the minimal elements that constitute the interaction (i.e. the complex of KIX domain in the Mediator with the transactivation domain (TAD) of the activator) by solution state NMR. We will identify small molecule inhibitors for each of the activator-Mediator interactions by high-throughput screening and validate them in an in vitro transcription assay. We will subsequently study the effect of these inhibitors on gene transcription and adipocyte differentiation, in vivo (cell culture), in 3T3-L1 pre-adipocyte cells. This will form the basis for future studies wherein the inhibitors identified and characterized here, will be tested in C.elegans and diabetic murine models. In addition, we seek to elucidate a novel mechanism of regulation of SREBP target genes orchestrated by let-7 micro-RNA. Micro-RNAs are known to modulate mRNA levels of a set of genes, thus synergistically regulating an entire pathway. We hypothesize let-7 modulates levels of PGC-1 co-activators, which in turn regulates SREBP target genes, and is expected to have profound implications in lipogenesis and mitochondrial biogenesis.
PUBLIC HEALTH RELEVANCE: Diabetes has become an increasingly serious epidemic in recent years. The nutritionally-derived metabolic pathway and the pro-inflammatory pathways are critical in the onset of diabetes and we have identified two novel transcription activator-Mediator interactions that control and regulate these pathway. We intend to target gene activation in these pathways by identifying small molecule inhibitors for the activator-Mediator interactions and understand endogenous gene regulation by micro-RNAs in these pathways.
描述(由申请人提供):近年来,糖尿病已成为一种日益严重的流行病,CDC估计仅在美国就有2400万人直接受影响。有两个相互关联的途径在糖尿病的发病中至关重要。它们是营养来源的代谢途径和促炎途径。通常发现上述两种途径的异常激活与糖尿病的病理进展相关。我们已经确定了两种新型转录激活因子-介体相互作用,可以控制和调节代谢和炎症途径。两种转录激活因子NF-:B(核因子-:B)和SREBP(固醇调节元件结合蛋白)在糖尿病的发生和发展中起重要作用。这两种因子已被证明在功能上与被称为激活剂募集辅因子(ARC)/介体复合物的辅激活剂相互作用。NF-:B和SREBP在调节参与糖尿病发病的许多基因的表达中是关键的。我们建议用小分子效应物靶向这两种转录因子(SREBP和NF-:B)的激活剂-介体相互作用,从而抑制基因激活。SREBP和NF-:B的激活剂-介体相互作用代表了新的靶点,因为它们的抑制会影响其激活途径中的最下游元件。我们将通过溶液状态NMR确定构成相互作用的最小元素的结构(即,介体中的KIX结构域与激活剂的反式激活结构域(KIX)的复合物)。我们将通过高通量筛选确定每个激活剂-介体相互作用的小分子抑制剂,并在体外转录测定中验证它们。随后,我们将研究这些抑制剂对基因转录和脂肪细胞分化的影响,在体内(细胞培养),在3 T3-L1前脂肪细胞。这将形成未来研究的基础,其中本文鉴定和表征的抑制剂将在秀丽隐杆线虫和糖尿病小鼠模型中进行测试。此外,我们试图阐明一种新的机制,SREBP靶基因的调控精心策划的let-7 micro-RNA。已知微RNA调节一组基因的mRNA水平,从而协同调节整个途径。我们假设let-7调节PGC-1共激活因子的水平,PGC-1共激活因子反过来调节SREBP靶基因,并且预计在脂肪生成和线粒体生物生成中具有深远的意义。
公共卫生相关性:近年来,糖尿病已成为一种日益严重的流行病。营养来源的代谢途径和促炎途径在糖尿病的发病中至关重要,我们已经确定了两种新的转录激活因子-介体相互作用,控制和调节这些途径。我们打算通过识别激活剂-介体相互作用的小分子抑制剂来靶向这些途径中的基因激活,并了解这些途径中微小RNA的内源性基因调控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haribabu Arthanari其他文献
Haribabu Arthanari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haribabu Arthanari', 18)}}的其他基金
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10591671 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10377588 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10392661 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10387787 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10594969 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
- 批准号:
10159285 - 财政年份:2020
- 资助金额:
$ 15.18万 - 项目类别:
Novel targets to regulate NF-kB & SREBP activity: an approach to combat diabetes
调节 NF-kB 的新靶点
- 批准号:
8318211 - 财政年份:2010
- 资助金额:
$ 15.18万 - 项目类别:
Novel targets in the regulation of NF-kB and SREBP activity: A two-faceted approa
NF-kB 和 SREBP 活性调节的新目标:两方面的方法
- 批准号:
8045247 - 财政年份:2010
- 资助金额:
$ 15.18万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 15.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing breast cancer invasion and proliferation when co-aggregated with adipocytes in multicellular spheroids created with a custom bioreactor to augment cell-cell connectivity.
当与多细胞球体中的脂肪细胞共聚集时,表征乳腺癌的侵袭和增殖,该多细胞球体是用定制生物反应器创建的,以增强细胞间的连接。
- 批准号:
10334113 - 财政年份:2022
- 资助金额:
$ 15.18万 - 项目类别:














{{item.name}}会员




