Ossicular Mechanics of a Low Frequency Ear and Implications for Bone-Conducted Hearing.
低频耳的听骨力学及其对骨传导听力的影响。
基本信息
- 批准号:10594482
- 负责人:
- 金额:$ 14.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAirAnatomyArticulationAuricular prosthesisBone ConductionCharacteristicsCochleaDetectionDrowningEarElephantsExhibitsExternal auditory canalFoodFrequenciesGoalsHead MovementsHearingHearing AidsHearing TestsHumanImageImpulsivityIncusInvestigationJawJointsLabyrinthLasersMalleusMammalsMasticationMeasurementMeasuresMechanicsMethodsModelingModificationMorphologyMotionNoiseOssicular Replacement ProsthesisPerformancePlayPromontoryProsthesisRoleRotationSeriesShapesSourceStapesStructure-Activity RelationshipTemporal bone structureTestingTimeTympanic membraneanimationbonecomparativecraniumdesignflexibilityhearing impairmentimprovedinsightmiddle earnovelpressurereconstructionresponsesoundsound frequencystructural determinantstransmission processvibration
项目摘要
Abstract
The mammalian ear contains three middle-ear bones called ossicles that transmit both air-conducted (AC)
sound from the eardrum to the inner ear and bone-conducted (BC) vibrations of the skull to the inner ear. The
functional significance of having three ossicles to transmit sound is not completely understood, yet their
varied shapes, mass distributions, and articulation around two flexible joints could serve to protect the inner
ear from static pressure and impulsive AC sounds presented in the ear canal, and could reduce sensitivity to
potentially distracting self-generated BC vibrations caused by head movement, chewing, etc. At the same
time, ossicles might also improve AC and BC hearing at low frequencies. In this study, we propose to test the
role that ossicular shape, mass and mass distribution, as well as flexibility play on 3D ossicular motion and
sound transmission into the cochlea for both human and elephant temporal bones in response to AC and BC
stimulation under normal and modified conditions. Despite significant anatomical differences, humans and
elephants exhibit very similar audiograms over their overlapping 20 Hz–11 kHz frequency range, although
elephants can hear below 20 Hz and humans can hear above 11 kHz. Middle-ear bones scale with skull size,
such that elephant ossicles (the largest among terrestrial mammals) are approximately seven times heavier
than those of humans. Studies suggest that BC hearing is enhanced below 100 Hz using mass-loading to
simulate greater ossicular mass, and our preliminary measurements on elephants suggest that their heavier
ossicles should yield an order of magnitude better BC hearing than humans at low frequencies. BC hearing in
elephants might also be enhanced due to what appears to be a partially fused incudo-malleolar joint. Thus,
quantifying the structure–function relationships and mass loading within human versus elephant ears could
improve our understanding of the possible optimizations and trade-offs within the middle ear. The immediate
goal of this investigation is to quantitatively compare human and elephant ossicular-chain morphology and
motion as it relates to input to the cochlea by measuring ossicular shape and mass distributions using µCT
imaging; and measuring 3D ossicular motions in response to AC and BC stimulation using 3D laser Doppler
vibrometry, for the normal and modified cases with added mass and reduced ossicular-joint flexibility. The
motion measurements will be used to animate µCT reconstructions of the ossicles, and these results will be
compared using moments of inertia (MOI) to quantify the functional implications of the inter-species structural
differences and effects of modifications in terms of: 1) sound transmission from the ear canal to the cochlea,
especially at lower frequencies; 2) the relative motion of the ossicles; and 3) the transmission of sound via
bone conduction. The structure–function relationships revealed through this inter-species comparison may
have ramifications in the design of specialized passive and active middle-ear prosthetic devices for restoring
human hearing.
摘要
哺乳动物的耳朵包含三个中耳骨称为听小骨,传输空气传导(AC)
从鼓膜到内耳的声音和从颅骨到内耳的骨传导(BC)振动。的
具有三个听小骨来传递声音的功能意义尚未完全理解,但它们的
不同的形状、质量分布和围绕两个柔性接头的铰接可以用来保护内部
耳道内的静态压力和脉冲交流声,并可降低敏感性,
头部运动、咀嚼等可能会分散自身产生的BC振动。同时
同时,听小骨也可能改善低频AC和BC听力。在这项研究中,我们建议测试
听骨形状、质量和质量分布以及柔韧性对听骨三维运动的作用,
人类和大象颞骨对AC和BC的耳蜗声传输反应
在正常和修改条件下的刺激。尽管存在显著的解剖学差异,人类和
大象在重叠的20 Hz-11 kHz频率范围内表现出非常相似的听力图,
大象可以听到20赫兹以下的声音,而人类可以听到11千赫以上的声音。中耳骨与头骨大小成比例,
大象的听小骨(陆地哺乳动物中最大的)大约重七倍
比人类的要多。研究表明,BC听力在100 Hz以下使用质量负荷增强,
模拟更大的听骨质量,我们对大象的初步测量表明,
听小骨在低频率下应产生比人类好一个数量级的BC听力。BC听证会
大象也可能是增强由于什么似乎是一个部分融合砧踝关节。因此,在本发明中,
量化人与大象耳朵的结构-功能关系和质量负荷,
提高我们对中耳内可能的优化和权衡的理解。立即
本研究的目的是定量比较人类和大象的听骨链形态,
通过使用µCT测量听骨形状和质量分布,
使用3D激光多普勒测量响应于AC和BC刺激的3D听骨运动
振动测量法,用于正常和改良病例,增加了质量,降低了听小骨关节的灵活性。的
运动测量将用于制作听小骨的µCT重建动画,这些结果将
使用惯性矩(MOI)进行比较,以量化物种间结构的功能影响
在以下方面的修改的差异和效果:1)从耳道到耳蜗的声音传输,
特别是在较低的频率下; 2)听小骨的相对运动;以及3)声音通过
骨传导通过这种种间比较揭示的结构-功能关系可能
在设计专门的被动和主动中耳假体装置以恢复
人类听觉
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin O'Connell-Rodwell其他文献
Caitlin O'Connell-Rodwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin O'Connell-Rodwell', 18)}}的其他基金
Ossicular Mechanics of a Low Frequency Ear and Implications for Bone-Conducted Hearing.
低频耳的听骨力学及其对骨传导听力的影响。
- 批准号:
10378136 - 财政年份:2019
- 资助金额:
$ 14.18万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.18万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 14.18万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.18万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 14.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




