Ossicular Mechanics of a Low Frequency Ear and Implications for Bone-Conducted Hearing.

低频耳的听骨力学及其对骨传导听力的影响。

基本信息

项目摘要

Abstract The mammalian ear contains three middle-ear bones called ossicles that transmit both air-conducted (AC) sound from the eardrum to the inner ear and bone-conducted (BC) vibrations of the skull to the inner ear. The functional significance of having three ossicles to transmit sound is not completely understood, yet their varied shapes, mass distributions, and articulation around two flexible joints could serve to protect the inner ear from static pressure and impulsive AC sounds presented in the ear canal, and could reduce sensitivity to potentially distracting self-generated BC vibrations caused by head movement, chewing, etc. At the same time, ossicles might also improve AC and BC hearing at low frequencies. In this study, we propose to test the role that ossicular shape, mass and mass distribution, as well as flexibility play on 3D ossicular motion and sound transmission into the cochlea for both human and elephant temporal bones in response to AC and BC stimulation under normal and modified conditions. Despite significant anatomical differences, humans and elephants exhibit very similar audiograms over their overlapping 20 Hz–11 kHz frequency range, although elephants can hear below 20 Hz and humans can hear above 11 kHz. Middle-ear bones scale with skull size, such that elephant ossicles (the largest among terrestrial mammals) are approximately seven times heavier than those of humans. Studies suggest that BC hearing is enhanced below 100 Hz using mass-loading to simulate greater ossicular mass, and our preliminary measurements on elephants suggest that their heavier ossicles should yield an order of magnitude better BC hearing than humans at low frequencies. BC hearing in elephants might also be enhanced due to what appears to be a partially fused incudo-malleolar joint. Thus, quantifying the structure–function relationships and mass loading within human versus elephant ears could improve our understanding of the possible optimizations and trade-offs within the middle ear. The immediate goal of this investigation is to quantitatively compare human and elephant ossicular-chain morphology and motion as it relates to input to the cochlea by measuring ossicular shape and mass distributions using µCT imaging; and measuring 3D ossicular motions in response to AC and BC stimulation using 3D laser Doppler vibrometry, for the normal and modified cases with added mass and reduced ossicular-joint flexibility. The motion measurements will be used to animate µCT reconstructions of the ossicles, and these results will be compared using moments of inertia (MOI) to quantify the functional implications of the inter-species structural differences and effects of modifications in terms of: 1) sound transmission from the ear canal to the cochlea, especially at lower frequencies; 2) the relative motion of the ossicles; and 3) the transmission of sound via bone conduction. The structure–function relationships revealed through this inter-species comparison may have ramifications in the design of specialized passive and active middle-ear prosthetic devices for restoring human hearing.
摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin O'Connell-Rodwell其他文献

Caitlin O'Connell-Rodwell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caitlin O'Connell-Rodwell', 18)}}的其他基金

Ossicular Mechanics of a Low Frequency Ear and Implications for Bone-Conducted Hearing.
低频耳的听骨力学及其对骨传导听力的影响。
  • 批准号:
    10378136
  • 财政年份:
    2019
  • 资助金额:
    $ 14.18万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 14.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了