Molecular and Cellular Mechanisms in Coronary Artery Development and Anomalies
冠状动脉发育和异常的分子和细胞机制
基本信息
- 批准号:10595393
- 负责人:
- 金额:$ 76.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBiological AssayBirthBreedingCardiacCellsComplementCongenital AbnormalityCoronaryCoronary CirculationCoronary Vessel AnomaliesCoronary VesselsCoronary arteryDataData AnalysesDevelopmentDiseaseEmbryoEmbryonic DevelopmentEndocardiumEndotheliumFluorescence-Activated Cell SortingGenesGeneticGoalsGrowthHeartHistologyHypoxiaImmunofluorescence ImmunologicIn Situ HybridizationIndividualInterventionKnowledgeLabelLifeMesenchymalMetabolicMolecularMusMyocardialMyocardial IschemiaMyocardiumNOTCH1 geneNamesPathogenesisPathway AnalysisPerinatalPhenotypeProcessProliferatingRegulationReporterResearch Project GrantsSignal TransductionSinusTGFB2 geneTGFBR3 geneTestingTransforming Growth Factor Beta 2VEGFA geneVascular Endothelial Growth Factor Receptor-3Vascular Endothelial Growth FactorsVascularizationVentricularVisualizationangiogenesisbiomarker validationclinically significantcombatdata integrationdifferential expressioneffective interventionexperimental studygene networkin vivoinsightloss of functionmalformationnew therapeutic targetnovel therapeuticsperinatal periodprogenitorsingle-cell RNA sequencingstem cellssudden cardiac deathtranslational medicine
项目摘要
PROJECT SUMMARY
Normal coronary artery formation is essential for heart growth and function. Malformed coronary arteries are a
clinically significant birth defect that can cause life-threatening cardiac complications, including ventricular
noncompaction, myocardial ischemia, and sudden cardiac death. Yet, developmental mechanisms that drive
proper coronary artery formation are incompletely understood, which has hindered our ability to develop the
heart-specific interventions for this devastating disease. The long-term goal of this project is therefore to reveal
the molecular and cellular mechanisms underlying coronary artery development so that we may identify key
regulatory factors for developing new targeted therapies to combat this congenital condition. We have addressed
this goal during previous finding period. Our studies have shown that embryonic coronary arteries in the inner
compact myocardium are formed by ventricular endocardial cells through angiogenesis regulated by the VEGF-
NOTCH signaling. Furthermore, our studies have revealed that these embryonic coronary arteries undergo
angiogenic expansion perinatally to add the neovessels to the growing compact myocardium. However, in
contrast to the vascularization of the compact myocardium, we know little about vascularization of trabecular
myocardium which remains largely avascular until birth. We have recently identified a subpopulation of coronary
progenitor cells among ventricular endocardial cells which are committed to the coronary arteries in the
trabecular myocardium. We named these cells as the second wave coronary progenitors (SCPs) to separate
them from the first wave coronary progenitors (FCPs) for the coronary vessels at the compact myocardium.
SCPs acquire angiogenic potential earlier in embryonic development through a previously unknown endocardial
to mesenchymal transformation (EMT) long before they undergo angiogenesis later during perinatal periods to
vascularize the trabecular myocardium. In this renewal application, we propose to characterize this new
angiogenic-EMT paradigm (angioEMT) by SCPs. Our overarching hypothesis is that vascularization of trabecular
myocardium by SCPs is regulated by a “two-hit” mechanism involving sequential angioEMT and hypoxia
signaling. We plan to test this hypothesis in three Specific Aims. Aim 1 will characterize SCPs by distinguishing
them from FCPs using a lineage-based single cell RNA-sequencing (scRNA-seq) analysis and a modified
functional angioEMT assay. Aim 2 will define the angioEMT signaling in the early fate decision by SCPs using
genetic loss-of-function approaches investigating the TGFb signaling. Aim 3 will decipher the angiogenic
signaling in the later angiogenic activation of SCPs focusing on VEGFA-VEGFR3 and DLL4-NOTCH1 signaling.
Vascularization of trabecular myocardium as well as trabecular compaction in the individual nulls will be
examined by histology, immunostaining, and RNAscope in situ hybridization. The changes in the SCP lineages
will be determined by scRNA-seq analysis, whereas the key factors underlying the two-hit angioEMT process
will be identified through gene network analysis. By completing these aims, we expect to provide new
mechanistic insights into coronary artery development that inform developmental pathogenesis of coronary
artery anomalies and ventricular noncompaction.
项目摘要
正常的冠状动脉形成对于心脏的生长和功能至关重要。畸形的冠状动脉是
临床上显着的先天缺陷,可能导致威胁生命的心脏并发症,包括心室
不采用,心肌缺血和心脏猝死。然而,发展机制的发展机制
正确理解了正确的冠状动脉形成,这阻碍了我们发展的能力
这种毁灭性疾病的心脏特异性干预措施。因此,该项目的长期目标是揭示
冠状动脉发育的基础分子和细胞机制,以便我们可以识别钥匙
开发新的靶向疗法以应对这种先天性疾病的监管因素。我们已经解决了
在上一个发现期间的目标。我们的研究表明,内部的胚胎冠状动脉
紧凑的心肌是由心室心内膜细胞通过VEGF-调节的血管生成形成的
Notch信令。此外,我们的研究表明这些胚胎冠状动脉发生
血管生成的周围膨胀,将新系列添加到日益紧凑的心肌中。但是,在
与紧凑型心肌的血管形成对比,我们对小径的血管化知之甚少
心肌在很大程度上保持尸体直至出生。我们最近确定了冠状动脉的亚群
心室心内膜细胞中的祖细胞,这些细胞致力于冠状动脉
小梁心肌。我们将这些细胞命名为第二波冠状动脉祖细胞(SCP)
它们来自紧凑型心肌处的冠状动脉血管的第一波冠状动脉祖细胞(FCP)。
SCP通过先前未知的心内膜发育中获得胚胎发育中的血管生成潜力
在间充质转化(EMT)之前很早就在围产期发生血管生成
血管性小梁心肌。在此续签应用中,我们建议描述这个新的
SCPS的血管生成 - EMT范式(血管头)。我们的总体假设是小梁的血管化
SCPS的心肌受涉及顺序血管头和缺氧的“两击”机制调节
信号。我们计划以三个具体目标来检验这一假设。 AIM 1将通过区分SCP来表征SCP
它们使用基于谱系的单细胞RNA-sequest(SCRNA-SEQ)分析和修改的FCPS。
功能性血管比测定法。 AIM 2将在SCP的早期脂肪决定中定义血管头信号传导
遗传丧失功能方法研究了TGFB信号传导。 AIM 3将破译血管生成
SCP的后来血管生成激活中的信号传导,重点是VEGFA-VEGFR3和DLL4-NOTCH1信号传导。
小梁心肌的血管化以及单个无效的小梁压实将是
通过组织学,免疫染色和原位杂交检查。 SCP谱系的变化
将通过SCRNA-seq分析确定,而两击血管内过程的关键因素
将通过基因网络分析来识别。通过完成这些目标,我们希望提供新的
对冠状动脉发育的机械洞察力,为冠状动脉发育的发病机理提供了信息
动脉异常和心室不合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIN ZHOU其他文献
BIN ZHOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIN ZHOU', 18)}}的其他基金
Molecular signaling in aortic valve development and congenital aortic valve defect
主动脉瓣发育和先天性主动脉瓣缺陷的分子信号传导
- 批准号:
10544023 - 财政年份:2022
- 资助金额:
$ 76.48万 - 项目类别:
Molecular signaling in aortic valve development and congenital aortic valve defect
主动脉瓣发育和先天性主动脉瓣缺陷的分子信号传导
- 批准号:
10364556 - 财政年份:2022
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10215615 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10052875 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10397428 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Control of cardiomyocyte cell cycle by REST in heart failure and regeneration
通过 REST 控制心力衰竭和再生中的心肌细胞周期
- 批准号:
10604334 - 财政年份:2020
- 资助金额:
$ 76.48万 - 项目类别:
Single Cell RNA-seq to Identify Endocardial Ontogenic Factors for the Heart
单细胞 RNA-seq 鉴定心脏的心内膜个体发育因子
- 批准号:
9769109 - 财政年份:2018
- 资助金额:
$ 76.48万 - 项目类别:
Deciphering the roles of Nfatc1 in developmental coronary angiogenesis
解读 Nfatc1 在发育性冠状动脉血管生成中的作用
- 批准号:
9276779 - 财政年份:2016
- 资助金额:
$ 76.48万 - 项目类别:
Deciphering the roles of Nfatc1 in developmental coronary angiogenesis
解读 Nfatc1 在发育性冠状动脉血管生成中的作用
- 批准号:
9160568 - 财政年份:2016
- 资助金额:
$ 76.48万 - 项目类别:
Mechanisms of Coronary Ostium Formation and Coronary Artery Patterning
冠状动脉口形成和冠状动脉模式的机制
- 批准号:
8580415 - 财政年份:2013
- 资助金额:
$ 76.48万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 76.48万 - 项目类别:
Neural and affective mechanisms underlying prospective self-control costs
潜在自我控制成本的神经和情感机制
- 批准号:
10660515 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Using new Next Generation Sequencing (NGS) approaches to analyze the fidelity of HIV reverse transcription in Endogenous Reverse Transcription reactions (ERT)
使用新的下一代测序 (NGS) 方法来分析内源性逆转录反应 (ERT) 中 HIV 逆转录的保真度
- 批准号:
10759845 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Targeting Trained Immunity in Trauma-Induced Immune Dysregulation
针对创伤引起的免疫失调中训练有素的免疫力
- 批准号:
10714384 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
- 批准号:
10724884 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别: