'Zero radius' laser forming of tungsten carbide/superabrasive cutting edges and teeth

碳化钨/超级磨料切削刃和齿的“零半径”激光成型

基本信息

  • 批准号:
    104050
  • 负责人:
  • 金额:
    $ 75.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

"We will use innovative additive manufacturing to radically update the process for forming hard teeth on saw blades. The most commonly used tooth tip material is tungsten carbide. In a typical tipped blade less than 1% of the high value wear material is used. The rest is machined off during the manufacturing process or left on the base and discarded when the sharp edges are worn.State-of-the-art tungsten carbide tipped (TCT) teeth are currently formed by welding pre-formed tungsten carbide inserts to steel strip and then grinding these to a sharp edge. The need to manipulate individual inserts means that fine-toothed metal-cutting blades ( \>6 Teeth Per Inch) cannot currently be manufactured. The grinding process is environmentally wasteful - of materials, energy and coolant.Our new process uses micro laser metal deposition (micro-LMD) of the tip material to form the hard cutting edge, thus avoiding the need to manipulate and weld TCT inserts. In LMD, a jet of powder (eg tungsten carbide) is directed at a surface while being simultaneously melted into the surface by a focused laser beam. We have obtained two patents on tooth-making via LMD. With our subcontractor ManuDirect we have experimented with micro-LMD in a test rig and have been able to achieve hard surfaces on teeth and proved their ability to cut.The edges of these teeth are still rounded; we are not yet able to form a sharp 'zero radius' cutting edge. However, once we are able to do so, we will have created a near-net-shape tooth, reducing or eliminating the need for subsequent grinding, or even permitting laser sharpening.Our process should also be applicable to all types of blade and other metal-ceramic combination. However as tungsten carbide is the most widely used abrasive it is our initial focus. The greatest opportunity will be in fine-toothed metal-cutting blades ( \>6 TPI) where there is currently no possibility of using TCT inserts and conventional bimetal blades blunt easily. In addition, we see an opportunity for a wood cutting saw blade that sits in the gap between bimetal and TCT in terms of cost and performance.The lead partner is a manufacturer and exporter of abrasive saw blades and will exploit the process through its customer base. The consortium includes a powder supplier, the UK's leading university in this area and a subcontractor that is expert in micro-LMD equipment."
“我们将使用创新的增材制造技术,从根本上更新在锯片上形成硬齿的工艺。最常用的齿尖材料是碳化钨。在典型的尖端叶片中,使用的高值磨损材料不到1%。其余部分在制造过程中被机加工掉,或者留在底座上,当锋利的边缘磨损时丢弃。目前,最先进的碳化钨尖齿(TCT)是通过将预先成型的碳化钨镶块焊接到钢带上,然后将其磨成锋利的边缘而形成的。由于需要操作单个刀片,因此目前无法制造出细齿金属切削刀片(每英寸6齿)。研磨过程是环境浪费-材料,能源和冷却剂。我们的新工艺使用尖端材料的微激光金属沉积(micro- lmd)来形成硬切削刃,从而避免了操作和焊接TCT刀片的需要。在LMD中,一束粉末(如碳化钨)在被聚焦的激光束熔化到表面的同时被指向表面。我们已经获得了两项LMD制牙专利。与我们的分包商ManuDirect一起,我们在测试平台上对micro-LMD进行了实验,并能够在牙齿上实现坚硬表面,并证明了它们的切割能力。这些牙齿的边缘仍然是圆的;我们还不能形成一个锋利的“零半径”切削刃。然而,一旦我们能够这样做,我们将创造一个近净形状的牙齿,减少或消除后续研磨的需要,甚至允许激光锐化。我们的工艺也应该适用于所有类型的叶片和其他金属陶瓷组合。然而,由于碳化钨是应用最广泛的磨料,它是我们最初关注的重点。最大的机会将是在细齿金属切削刀片(\ bbb6 TPI),目前不可能使用TCT刀片,传统的双金属刀片容易钝化。此外,我们看到了在成本和性能方面介于双金属和TCT之间的木材切割锯片的机会。主要合作伙伴是磨料锯片的制造商和出口商,并将通过其客户群开发该过程。该联盟包括一家粉末供应商、英国该领域的顶尖大学和一家微型lmd设备专家分包商。”

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Studentship

相似国自然基金

k-radius序列及相关组合问题的研究
  • 批准号:
    11771419
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
Radius k-means算法及其拓展问题的研究
  • 批准号:
    61502434
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Osteogenic and angiogenic tissue regeneration to accelerate secondary bone healing during aging
成骨和血管生成组织再生可加速衰老过程中的二次骨愈合
  • 批准号:
    10399512
  • 财政年份:
    2019
  • 资助金额:
    $ 75.4万
  • 项目类别:
Osteogenic and angiogenic tissue regeneration to accelerate secondary bone healing during aging
成骨和血管生成组织再生可加速衰老过程中的二次骨愈合
  • 批准号:
    9980268
  • 财政年份:
    2019
  • 资助金额:
    $ 75.4万
  • 项目类别:
Osteogenic and angiogenic tissue regeneration to accelerate secondary bone healing during aging
成骨和血管生成组织再生可加速衰老过程中的二次骨愈合
  • 批准号:
    10617257
  • 财政年份:
    2019
  • 资助金额:
    $ 75.4万
  • 项目类别:
Osteogenic and angiogenic tissue regeneration to accelerate secondary bone healing during aging
成骨和血管生成组织再生可加速衰老过程中的二次骨愈合
  • 批准号:
    9811262
  • 财政年份:
    2019
  • 资助金额:
    $ 75.4万
  • 项目类别:
Measurement of the proton radius by a precision laser spectroscopy of muonic hydrogen atom
通过精密激光光谱测量μ子氢原子的质子半径
  • 批准号:
    18K13572
  • 财政年份:
    2018
  • 资助金额:
    $ 75.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probing Tumor Microenvironment Using Nanotechnology
利用纳米技术探测肿瘤微环境
  • 批准号:
    7343362
  • 财政年份:
    2008
  • 资助金额:
    $ 75.4万
  • 项目类别:
Peptide Biomarker Discovery by Mass Spectrometry for Early Detection of Liver Can
通过质谱法发现肽生物标志物,用于早期检测肝细胞癌
  • 批准号:
    7531854
  • 财政年份:
    2008
  • 资助金额:
    $ 75.4万
  • 项目类别:
Femtosecond laser axotomy for in vivo nerve regeneration studies in C elegans
飞秒激光轴切术用于线虫体内神经再生研究
  • 批准号:
    7302626
  • 财政年份:
    2007
  • 资助金额:
    $ 75.4万
  • 项目类别:
Femtosecond laser axotomy for in vivo nerve regeneration studies in C elegans
飞秒激光轴切术用于线虫体内神经再生研究
  • 批准号:
    7487005
  • 财政年份:
    2007
  • 资助金额:
    $ 75.4万
  • 项目类别:
High Efficiency Linked Scan Mass Spectrometer
高效连线扫描质谱仪
  • 批准号:
    7489888
  • 财政年份:
    2006
  • 资助金额:
    $ 75.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了