Loss-based Bayesian Prediction

基于损失的贝叶斯预测

基本信息

  • 批准号:
    DP200101414
  • 负责人:
  • 金额:
    $ 27.59万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2020
  • 资助国家:
    澳大利亚
  • 起止时间:
    2020-06-19 至 2025-06-18
  • 项目状态:
    未结题

项目摘要

This project proposes a new paradigm for prediction. Using state-of-the-art computational methods, the project aims to produce accurate, fit for purpose, predictions which, by design, reduce the loss incurred when the prediction is inaccurate. Theoretical validation of the new predictive method, without reliance on knowledge of the correct statistical model, is an expected outcome, as is an extensive numerical assessment of its performance in empirical settings. The new paradigm should produce significant benefits for all fields in which the consequences of predictive inaccuracy are severe. Problems that lead to substantial economic, financial or environmental loss if predictions are incorrect will be given particular attention.
这个项目提出了一个新的预测范式。使用最先进的计算方法,该项目旨在产生准确的,符合目的的预测,通过设计,减少预测不准确时造成的损失。不依赖于正确统计模型知识的新预测方法的理论验证是预期的结果,对其在经验设置中的表现进行广泛的数值评估也是预期的结果。在所有因预测不准确而导致严重后果的领域,新的范式都将带来显著的好处。如果预测不正确,将特别注意导致重大经济、财政或环境损失的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

A/Prof Worapree Maneesoonthorn其他文献

A/Prof Worapree Maneesoonthorn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Studentship
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
  • 批准号:
    23K16948
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
  • 批准号:
    2330794
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
Development of prodrug-type anticancer drugs using a design of experiment system based on computational chemistry and Bayesian optimization
利用基于计算化学和贝叶斯优化的实验系统设计开发前药型抗癌药物
  • 批准号:
    23K19424
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mapping of crustal strength of Japan: Bayesian-based unified estimation of seismic velocity and density structures
日本地壳强度绘图:基于贝叶斯的地震速度和密度结构统一估计
  • 批准号:
    23K13197
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
  • 批准号:
    10718215
  • 财政年份:
    2023
  • 资助金额:
    $ 27.59万
  • 项目类别:
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 27.59万
  • 项目类别:
    Standard Grant
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10620291
  • 财政年份:
    2022
  • 资助金额:
    $ 27.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了