ENCODING TIME--DYNAMIC ANALYSIS OF BEHAVIOR
编码时间--行为动态分析
基本信息
- 批准号:2246231
- 负责人:
- 金额:$ 17.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-03-01 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:Agnatha alternatives to animals in research brain stem diving /swimming efferent nerve electromyography electrophysiology glutamates interneurons mathematical model membrane potentials neural conduction neural information processing neural initiation neuroanatomy neurons psychomotor function psychophysiology reticulospinal tract sensory thresholds spinal cord spinal cord mapping
项目摘要
Previously, we showed fictive swimming in isolated lamprey spinal cords
deviated from a uniform traveling wave. We asserted that the pattern of
these deviations could be used to deduce functional properties of the
intersegmental coordinating system. Using new statistical and theoretical
methods, we are near a full description of the phase deviations and what
they imply. In so doing, we have begun to generate statistical and
theoretical tools to study changes in the spinal segments when interacting
with descending and sensory inputs. By the end of year one we will begin
to "put the system back together," that is, to reintroduce into the
isolated spinal preparation other portions of the nervous system and
sensorium. The goal is to begin to understand, in a vertebrate, how such
systems are used adaptively by intact animals, and to deduce general
principles of organization for such systems.
Completion of the statistical and theoretical work involves: (a)
simulations of the behavior of a chain of coupled oscillators with noise
added. How does the noise propagate? How do the length and strength of
the coordinating fibers affect the behavior? What statistical and time
series methods are most appropriate for the analysis?
We will then ask the following:
1. The phasic output of the reticulospinal (RS) neurons is said to be "in
phase" with the motor output of the rostral segments, but this was with
very few segments attached. If true, it could be disastrous since the
relative phase angles of the activity of all 100 segments of the body must
span 360 degrees of the cycle, and RS cells have powerful effects along the
entire cord. We will use a preparation with brain stem and 50 segments to
deduce: (a) What is the impact of the phasic activity from the RS nuclei
upon the motor output of the spinal segments? Is the pattern more or less
stable? Is it changed? (b) Using intracellular recording, what is the
pattern of input from the spinal segments to the RS neurons? Is there some
topographic map of the spinal segments along the nuclei? Or do all cells
receive the same input? (c) Do the RS neurons have their own oscillations
when activated with glutamate? What is the output from the reticular
neurons to the spinal segments when a large complement of rostral and
caudal segments provide input to the RS neurons? Is the RS neurons' output
still phasic under these conditions? Does the output from the RS cells go
to all spinal segments equally? Is it distributed across the entire cycle
in all cells? (d) If phasic, how does the output from the RS nuclei
interact with the coordination among the segments? This will be asked by
modeling the interaction after the above data are collected.
2. If the brain and mechanosensory input both interact with the CPG, does
the interaction change CPG output? (a) We will add mechanical forcing to
the end of spinal segments with the brain attached to see how the output
pattern is changed. This will also be done with the tail attached.
Do the interactions stabilize or destabilize the vertebrate CPG? Do the
brain/CPG/sensory interactions function as proposed in the cockroach to
heighten responsiveness to unexpected perturbations and maintain some
optimal frequency for the system? What are the functional consequences of
the interactions? Finally, the overall goal is to see if we can establish
principles of organization and function for motor systems that produce
rhythmic movements.
在此之前,我们展示了在分离的七鳃鳗脊髓中假想游泳。
偏离了均匀的行波。我们断言,这种模式
这些偏差可以用来推断
节间协调系统。使用新的统计和理论
方法,我们几乎完全描述了相位偏差和什么
它们暗示着。在这样做的过程中,我们已经开始产生统计和
研究相互作用时脊柱节段变化的理论工具
有下行和感官输入。到第一年年底,我们将开始
“把系统重新组合在一起”,也就是重新引入
隔离的脊椎准备神经系统的其他部分和
感官间。目标是开始了解脊椎动物是如何做到这一点的
系统被完整的动物适应性地使用,并推导出一般的
这类系统的组织原则。
完成统计和理论工作涉及:(A)
含噪声耦合振子链行为的模拟
添加了。噪音是如何传播的?它的长度和强度是如何
协调纤维会影响行为吗?什么统计数据和时间?
系列方法最适合于分析吗?
然后,我们将询问以下问题:
1.网状脊髓(RS)神经元的时相输出称为“in
相位“与吻部的电机输出,但这是与
附连的节段很少。如果是真的,这可能是灾难性的,因为
身体所有100个节段的活动的相对相位角必须
跨越360度周期,RS细胞沿途有强大的作用
整根绳子。我们将使用脑干和50个节段的准备
推论:(A)RS核的时相活动的影响是什么
脊椎节段的运动输出?这种模式是多多少少的
稳定吗?它变了吗?(B)使用细胞内记录,什么是
从脊髓节段到RS神经元的输入模式?有没有一些
脊椎节段沿核的地形图?或将所有单元格
收到相同的输入?(C)RS神经元是否有其自身的振荡
当谷氨酸被激活时?网状图的输出是什么?
当神经元向脊髓节段大量补充时,吻侧和
尾段为RS神经元提供输入?是RS神经元的输出
在这种情况下仍然是阶段性的?RS像元的输出是否会
对所有脊椎节段一视同仁?它是否分布在整个周期中
在所有的牢房里?(D)如果是阶段性的,RS核的输出是如何
与各细分市场之间的协调互动?这将由以下人员提出
在收集了上述数据之后,对交互进行建模。
2.如果大脑和机械感觉输入都与CPG相互作用,
交互作用改变了CPG的输出?(A)我们会增加机械强制措施
末尾的脊柱节段与大脑相连,看看如何输出
模式改变了。这也将完成与尾巴连接。
这种相互作用是稳定还是破坏脊椎动物CPG的稳定?做这个
大脑/CPG/感觉相互作用的功能如蟑螂到
提高对意想不到的干扰的响应能力,并保持一些
系统的最佳频率是多少?的功能后果是什么?
互动?最后,总体目标是看看我们是否能建立
生产电机系统的组织和功能原则
有节奏的动作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AVIS H COHEN其他文献
AVIS H COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AVIS H COHEN', 18)}}的其他基金
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7435327 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7626446 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7915844 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7122493 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7237159 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
CRCNS: An Integrated Locomotion Model for Lamprey Swimming
CRCNS:七鳃鳗游泳的综合运动模型
- 批准号:
7046429 - 财政年份:2005
- 资助金额:
$ 17.55万 - 项目类别:
REGULATION OF FUNCTIONAL RECOVERY AFTER SPINAL INJURY
脊柱损伤后功能恢复的调节
- 批准号:
6363962 - 财政年份:2000
- 资助金额:
$ 17.55万 - 项目类别:
REGULATION OF FUNCTIONAL RECOVERY AFTER SPINAL INJURY
脊柱损伤后功能恢复的调节
- 批准号:
6087291 - 财政年份:2000
- 资助金额:
$ 17.55万 - 项目类别:














{{item.name}}会员




