Sequential decision-making in dynamic and uncertain environments
动态和不确定环境中的顺序决策
基本信息
- 批准号:DP200100700
- 负责人:
- 金额:$ 33.7万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2020
- 资助国家:澳大利亚
- 起止时间:2020-06-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current machine learning and optimisation methods cannot well support sequential prediction and decision-making due to the dynamic nature and pervasive presence of big data. This project aims to create a foundation and technology for sequence and uncertainty learning, sequential and dynamic optimisation, and their integration. It is expected to improve robustness and mitigate the vulnerabilities of machine learning algorithms, to increase prediction accuracy and reliability in dynamic sequences, and to support decision-making in complex situations to achieve robust and adaptive results. Anticipated outcomes can help data scientists with state-of-the-art skills to manage sequential data and benefit data-enabled innovation in Australia.
由于大数据的动态性和普遍存在,当前的机器学习和优化方法不能很好地支持顺序预测和决策。该项目旨在为序列和不确定性学习、序列和动态优化及其集成创建基础和技术。预计它将提高机器学习算法的鲁棒性并减轻其脆弱性,提高动态序列中的预测准确性和可靠性,并支持复杂情况下的决策,以实现鲁棒和自适应的结果。预期的结果可以帮助具有最先进技能的数据科学家管理序列数据,并使澳大利亚的数据创新受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Jie Lu其他文献
Prof Jie Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Jie Lu', 18)}}的其他基金
Transfer Learning for Genome Analysis and Personalised Recommendation
用于基因组分析和个性化推荐的迁移学习
- 批准号:
LP210100414 - 财政年份:2021
- 资助金额:
$ 33.7万 - 项目类别:
Linkage Projects
Autonomous learning for decision making in complex situations
复杂情况下自主学习决策
- 批准号:
FL190100149 - 财政年份:2020
- 资助金额:
$ 33.7万 - 项目类别:
Australian Laureate Fellowships
Concept Drift Detection and Reaction for Data-driven Decision Making
数据驱动决策的概念漂移检测和反应
- 批准号:
DP150101645 - 财政年份:2015
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
Fuzzy Transfer Learning for Prediction in Data-Shortage and Rapidly-Changing Environments
用于数据短缺和快速变化环境中预测的模糊迁移学习
- 批准号:
DP140101366 - 财政年份:2014
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
Trust-enhanced recommender systems for personalised government-to-business e-service
用于个性化政府对企业电子服务的信任增强推荐系统
- 批准号:
DP110103733 - 财政年份:2011
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
A Comprehensive Platform for Dynamic Decision Support in Warning Systems through Better Management of Uncertain Information
通过更好地管理不确定信息,为预警系统提供动态决策支持的综合平台
- 批准号:
DP0880739 - 财政年份:2008
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
Uncertain Information Processing for Situation Awareness and Dynamic Decision-Making in Emergency Management
应急管理中的态势感知和动态决策的不确定信息处理
- 批准号:
DP0559213 - 财政年份:2005
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
Generalizing Multi-level Decision Support Handling Multi-objectives, Multi-followers and Uncertainty for Critical Resource Planning
推广多层次决策支持处理关键资源规划的多目标、多追随者和不确定性
- 批准号:
DP0557154 - 财政年份:2005
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
Group Decision Support Systems for Fuzzy Multi-objective Decision Problems
模糊多目标决策问题的群决策支持系统
- 批准号:
DP0211701 - 财政年份:2002
- 资助金额:
$ 33.7万 - 项目类别:
Discovery Projects
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
基于神经营销学方法的品牌延伸认知与决策研究
- 批准号:70772048
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
- 批准号:
2246187 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
- 批准号:
10664339 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
- 批准号:
10705963 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
- 批准号:
10583917 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
- 批准号:
23K17547 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
- 批准号:
10755010 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323113 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2303000 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2302999 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Standard Grant
Construction of Large-Scale Sequential Decision-Making Methods Leveraging Structures
利用结构构建大规模顺序决策方法
- 批准号:
23K19986 - 财政年份:2023
- 资助金额:
$ 33.7万 - 项目类别:
Grant-in-Aid for Research Activity Start-up