Topologically nontrivial electromagnetic states
拓扑非平凡电磁态
基本信息
- 批准号:DP150102070
- 负责人:
- 金额:$ 32.63万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2015
- 资助国家:澳大利亚
- 起止时间:2015-01-28 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topological properties play a fundamental role in many physical phenomena. The best known examples are quantum Hall systems, where insensitivity to local properties manifests itself as conductance through edge states that is insensitive to disorder. While the traditional research focus has been on electronic systems, there has been a recent emergence of great interest in exploring topological orders with photons. Several novel intriguing theoretical schemes have been proposed to explore topological orders in photonic systems, both in the linear and strongly interacting regimes. This project aims to develop innovative theoretical and experimental approaches to explore topologically non-trivial states, from microwaves to optical regimes.
拓扑性质在许多物理现象中起着重要的作用。最著名的例子是量子霍尔系统,其中对局部性质的不敏感性表现为通过对无序不敏感的边缘状态的电导。虽然传统的研究重点一直是电子系统,最近出现了极大的兴趣,探索与光子的拓扑秩序。人们提出了一些新颖的理论方案来研究光子系统中的拓扑序,包括线性和强相互作用两种情况。该项目旨在开发创新的理论和实验方法来探索从微波到光学状态的拓扑非平凡状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Yuri Kivshar其他文献
Prof Yuri Kivshar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Yuri Kivshar', 18)}}的其他基金
Metaphotonics and metasurfaces for disruptive sensing technologies
用于颠覆性传感技术的超光子学和超表面
- 批准号:
DP210101292 - 财政年份:2021
- 资助金额:
$ 32.63万 - 项目类别:
Discovery Projects
Nonlinear topological photonics
非线性拓扑光子学
- 批准号:
DP200101168 - 财政年份:2020
- 资助金额:
$ 32.63万 - 项目类别:
Discovery Projects
Optically resonant dielectric structures for nanophotonics
用于纳米光子学的光学谐振介电结构
- 批准号:
DP150102071 - 财政年份:2015
- 资助金额:
$ 32.63万 - 项目类别:
Discovery Projects
Nanoscale optical microscopy facility
纳米级光学显微镜设备
- 批准号:
LE100100048 - 财政年份:2010
- 资助金额:
$ 32.63万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
All-optical technologies, nanophotonics, and metamaterials
全光学技术、纳米光子学和超材料
- 批准号:
FF0776124 - 财政年份:2007
- 资助金额:
$ 32.63万 - 项目类别:
Federation Fellowships
Left-handed metamaterials and negative refraction
左手超材料和负折射
- 批准号:
DP0558316 - 财政年份:2005
- 资助金额:
$ 32.63万 - 项目类别:
Discovery Projects
Nonlinear Photonics and All-Optical Technologies
非线性光子学和全光技术
- 批准号:
FF0344691 - 财政年份:2002
- 资助金额:
$ 32.63万 - 项目类别:
Federation Fellowships
相似海外基金
CAREER: Nontrivial correlations in the neural code: a question of synchrony
职业:神经代码中的非平凡相关性:同步问题
- 批准号:
2239679 - 财政年份:2023
- 资助金额:
$ 32.63万 - 项目类别:
Continuing Grant
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
$ 32.63万 - 项目类别:
Postgraduate Scholarships - Doctoral
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2021
- 资助金额:
$ 32.63万 - 项目类别:
Postgraduate Scholarships - Doctoral
Magnetotransport properties of topological materials with nontrivial magnetic structure
具有非平凡磁结构的拓扑材料的磁输运特性
- 批准号:
21K03454 - 财政年份:2021
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nontrivial band structure in composite atomic layers studied by micro-focused aser angle-resolved photoelectron spectroscopy
微聚焦激光角分辨光电子能谱研究复合原子层中的非平凡能带结构
- 批准号:
20H01834 - 财政年份:2020
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: BRAIDING: Multi-terminal Josephson circuits supporting nontrivial Chern topologies for anyonic qubits
EAGER:编织:多终端约瑟夫森电路支持任意子量子位的非平凡陈氏拓扑
- 批准号:
1836710 - 财政年份:2018
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Collaborative Research: Carrier dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
- 批准号:
1809708 - 财政年份:2018
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Novel magnon transport phenomena under spin textures with nontrivial topology and symmetry
具有非平凡拓扑和对称性的自旋纹理下的新型磁振子输运现象
- 批准号:
18H03685 - 财政年份:2018
- 资助金额:
$ 32.63万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Carrier Dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
- 批准号:
1809120 - 财政年份:2018
- 资助金额:
$ 32.63万 - 项目类别:
Standard Grant
Quantum Dynamics of Topologically Nontrivial Systems with Coulomb Blockade Effects
具有库仑封锁效应的拓扑非平凡系统的量子动力学
- 批准号:
386844999 - 财政年份:2017
- 资助金额:
$ 32.63万 - 项目类别:
Research Grants