Collaborative Research: Carrier dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys

合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相

基本信息

  • 批准号:
    1809708
  • 负责人:
  • 金额:
    $ 28.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Semiconductors suitable for the development of infrared opto-electronic devices attract attention of physicists and engineers for many years. Metamorphic molecular beam epitaxy, a novel technology for material development, produces high quality compounds with precise control of their composition (indium, arsenic, aluminum and antimony) over a wide range of atomic concentrations. This ability allows deep studies of the "quantum" properties of important narrow-band semiconductors that are protected against material imperfections. These properties may have profound implication for the performance of a variety of devices including quantum computers. In this project the interdisciplinary research team from Stony Brook University and Georgia Institute of Technology plans to use novel materials for experimental demonstration of intriguing features of quantum physics. The efforts combine development of new materials and study of their physical properties and energy spectra by a variety of advanced experimental techniques. The project also provides for synergetic training of graduate students in physics, material science, and engineering, creating research opportunities for undergraduate students. The K-12 education component aims at cultivating an early-stage awareness of using new materials and technologies to improve the device performance without compromising the quality of human life.This project is to carry out epitaxial growth of high-quality indium arsenide antimonide (InAsSb) alloys with controllable nanoscale ordering and to investigate the manifestations of the new topologically nontrivial phases in these materials. The material growth is based on a recently developed virtual substrate approach, which lifts the constraint from the substrate lattice constant. The physical properties of the InAsSb ordered alloys can then be controlled to an exceptional degree, via varying the lattice constant, the strain, the alloy composition, and the composition modulation period. With these new materials, the research team intends to answer the following fundamental questions. (1) Can nontrivial topological phases be realized and observed in metamorphic InAsSb alloys with nanoscale ordering and tunable bandgap? (2) Can the InAsSb ordered alloys be a new platform for demonstration of Majorana zero mode? These topics are of great fundamental and technological interest, particularly for the solid-state realization of topological quantum computing. The technical approaches of the project include band structure calculation, advanced epitaxial growth, and cutting-edge characterization methods. The latter features transmission electron microscopy, high-resolution x-ray diffraction, reciprocal space mapping, infrared spectroscopy in high magnetic fields, and angle-resolved photoemission spectroscopy. Graduate and undergraduate students participating in the project have unique opportunities to master these methods and engage in all stages of the material development process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
适合红外光电器件发展的半导体,多年来一直受到物理学家和工程师的关注。变质分子束外延是一种新型的材料开发技术,可以在很宽的原子浓度范围内精确控制其组成(铟、砷、铝和锑),从而生产出高质量的化合物。这种能力允许对重要的窄带半导体的“量子”特性进行深入研究,以防止材料缺陷。这些特性可能对包括量子计算机在内的各种设备的性能产生深远的影响。在这个项目中,来自石溪大学和佐治亚理工学院的跨学科研究团队计划使用新型材料进行量子物理有趣特征的实验演示。通过各种先进的实验技术,将新材料的开发与对其物理性质和能谱的研究结合起来。该项目还为物理、材料科学和工程方面的研究生提供协同培训,为本科生创造研究机会。K-12教育部分旨在培养使用新材料和技术的早期意识,在不影响人类生活质量的情况下提高设备性能。本项目是在可控纳米级有序的情况下进行高质量砷化锑化铟(InAsSb)合金的外延生长,并研究这些材料中新的拓扑非平凡相的表现。材料生长基于最近开发的虚拟衬底方法,该方法解除了衬底晶格常数的约束。通过改变晶格常数、应变、合金成分和成分调制周期,可以对InAsSb有序合金的物理性能进行特殊程度的控制。利用这些新材料,研究小组打算回答以下基本问题。(1)在具有纳米级有序和可调带隙的变质InAsSb合金中是否可以实现和观察到非平凡的拓扑相?(2) InAsSb有序合金能否成为马约拉纳零模验证的新平台?这些主题具有重大的基础和技术意义,特别是对于拓扑量子计算的固态实现。该项目的技术途径包括能带结构计算、先进外延生长和前沿表征方法。后者具有透射电子显微镜,高分辨率x射线衍射,互反空间映射,高磁场红外光谱和角度分辨光发射光谱。参与该项目的研究生和本科生有独特的机会掌握这些方法并参与材料开发过程的各个阶段。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Suchalkin其他文献

Microcavity enhanced Stark optical modulator for long-wave infrared
  • DOI:
    10.1016/j.ssc.2022.115010
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sergey Suchalkin;Boris Laykhtman;G. Belenky;Stefan P. Svensson;Gela Kipshidze;Jhair Alzamora
  • 通讯作者:
    Jhair Alzamora

Sergey Suchalkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
  • 批准号:
    2015946
  • 财政年份:
    2020
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Studies of Carrier Selective Passivating Contacts for Efficient Photovoltaic Devices using Laser Processing and Atomic Resolution Interfaces
合作研究:利用激光加工和原子分辨率接口对高效光伏器件的载流子选择性钝化接触进行基础研究
  • 批准号:
    2005098
  • 财政年份:
    2020
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
  • 批准号:
    2015954
  • 财政年份:
    2020
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Studies of Carrier Selective Passivating Contacts for Efficient Photovoltaic Devices using Laser Processing and Atomic Resolution Interfaces
合作研究:利用激光加工和原子分辨率接口对高效光伏器件的载流子选择性钝化接触进行基础研究
  • 批准号:
    2005057
  • 财政年份:
    2020
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermoelectric transport and carrier dynamics in three-dimensional chalcogenide nanowire networks
合作研究:三维硫族化物纳米线网络中的热电输运和载流子动力学
  • 批准号:
    1905571
  • 财政年份:
    2019
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermoelectric transport and carrier dynamics in three-dimensional chalcogenide nanowire networks
合作研究:三维硫族化物纳米线网络中的热电输运和载流子动力学
  • 批准号:
    1905037
  • 财政年份:
    2019
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Carrier Dispersion and Nontrivial Topological Phases in Ultra-Low Bandgap Metamorphic InAsSb Ordered Alloys
合作研究:超低带隙变质 InAsSb 有序合金中的载流子色散和非平凡拓扑相
  • 批准号:
    1809120
  • 财政年份:
    2018
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Fine-Grained Spectrum Access for Carrier-Aggregation Based Wireless Networks
NeTS:小型:协作研究:基于载波聚合的无线网络的细粒度频谱接入
  • 批准号:
    1954608
  • 财政年份:
    2018
  • 资助金额:
    $ 28.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了