PREDICTING TUMOR RESPONSE BY 31-P MRS

通过 31-P MRS 预测肿瘤反应

基本信息

项目摘要

DESCRIPTION: This application is from Memorial Sloan-Kettering (MSK). Previous 31-P NMR spectroscopic studies of murine tumors has suggested that it may be feasible to predict tumor responses from spectral changes. Preliminary clinical studies from many institutions, studying a range of tumors, using different scanners, with a plethora of varied techniques, have suggested that although the spectral changes in patients and murine tumors appear to be quite different, nevertheless, it may be possible to predict clinical tumor response on the basis of spectral changes. In some studies it has been suggested that spectra obtained pretreatment may be indicative of tumor response. The applicants are therefore proposing a multi institutional cooperative type study to answer the questions of whether NMR spectroscopy can 1) a priori predict tumor response (from the pretreatment spectrum) and 2) be an early predictor of tumor response by monitoring spectral changes during the first cycle of chemotherapy prior to tumor shrinkage. The applicants propose to use inform techniques (coils, data analysis, acquisition techniques, 1H decoupling, volume localization etc) so that the spectra are comparable from one institution to the other. The applicants propose to study four different tumors (extremity sarcomas, advanced breast cancer, non Hodgkin's lymphoma, and squamous cell cancer of the head and neck). These tumor sites have the common factor of being superficial and therefore it is expected that localization will be easier (and more accurate) and signal to noise better. These two factors are critical if one is to accurately measure tumor metabolite concentrations. The hypotheses enumerated above will be tested by correlating spectral changes with tumor response, disease free survival, survival, and other clinical markers that are being obtained on these patients. In addition to addressing these important clinical questions, this study should also provide insight into phospholipid metabolism by monitoring changes in phospholipid anabolite and catabolite. Phospholipid metabolism may be an important factor in determining tumor growth, cell cycle distribution, metastases and other important facets of tumor biology and the NMR studies may yield new insights into this area.
此应用程序来自Memorial Sloan-Kettering(MSK)。 先前对小鼠肿瘤的31-P NMR光谱研究表明, 这可能是可行的,以预测肿瘤的反应,从光谱 变化来自许多机构的初步临床研究, 一系列的肿瘤,使用不同的扫描仪, 技术,已经表明,虽然光谱的变化, 患者和小鼠肿瘤似乎是完全不同的,然而, 根据以下指标预测临床肿瘤反应是可能的: 光谱变化一些研究表明, 获得的预处理可以指示肿瘤反应。的 因此,申请人提出了一种多机构合作型 研究,以回答是否核磁共振光谱可以1)先验的问题, 预测肿瘤反应(从治疗前光谱)和2)是一个 通过监测治疗期间的光谱变化来早期预测肿瘤反应 肿瘤缩小前的第一个化疗周期。 的 申请人建议使用INFORM技术(线圈,数据分析, 采集技术、1H去耦、体积定位等), 各机构的光谱是可比的。 的 申请人提出研究四种不同的肿瘤(四肢肉瘤, 晚期乳腺癌、非霍奇金淋巴瘤和鳞状细胞癌 头和脖子)。这些肿瘤部位具有以下共同因素: 因此,预计本地化将是 更容易(更准确),信噪比更好。这两个因素 如果要精确测量肿瘤代谢物 浓度的以上列举的假设将通过以下方式进行检验: 将光谱变化与肿瘤反应,无病生存, 生存率和其他临床指标, 患者除了解决这些重要的临床问题外, 这项研究还应该提供深入了解磷脂代谢, 监测磷脂合成代谢物和分解代谢物的变化。 磷脂代谢可能是决定肿瘤的重要因素 生长、细胞周期分布、转移和其他重要方面 肿瘤生物学和核磁共振研究可能会产生新的见解, 区

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JASON Arthur KOUTCHER其他文献

JASON Arthur KOUTCHER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JASON Arthur KOUTCHER', 18)}}的其他基金

Imaging tumor and T cell responses to metabolic and immune modulation therapy
成像肿瘤和 T 细胞对代谢和免疫调节治疗的反应
  • 批准号:
    10192675
  • 财政年份:
    2017
  • 资助金额:
    $ 18.85万
  • 项目类别:
MR-PET for a Small Animal Imaging Center
用于小动物成像中心的 MR-PET
  • 批准号:
    7943047
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
MR-PET for a Small Animal Imaging Center
用于小动物成像中心的 MR-PET
  • 批准号:
    7854793
  • 财政年份:
    2009
  • 资助金额:
    $ 18.85万
  • 项目类别:
Project 2: Early Detection of Breast Cancer Subtypes by Raman Spectroscopy with Heavy Water Labeling and MultiPhoton Microscopy
项目2:通过重水标记拉曼光谱和多光子显微镜早期检测乳腺癌亚型
  • 批准号:
    10250468
  • 财政年份:
    2008
  • 资助金额:
    $ 18.85万
  • 项目类别:
Project 2: Early Detection of Breast Cancer Subtypes by Raman Spectroscopy with Heavy Water Labeling and MultiPhoton Microscopy
项目2:通过重水标记拉曼光谱和多光子显微镜早期检测乳腺癌亚型
  • 批准号:
    10021578
  • 财政年份:
    2008
  • 资助金额:
    $ 18.85万
  • 项目类别:
Non-Invasive Markers of Tumor Response: A Study of Anti-Angiogenic Therapy
肿瘤反应的非侵入性标志物:抗血管生成治疗的研究
  • 批准号:
    7729463
  • 财政年份:
    2008
  • 资助金额:
    $ 18.85万
  • 项目类别:
ANIMAL IMAGING
动物成像
  • 批准号:
    7671810
  • 财政年份:
    2008
  • 资助金额:
    $ 18.85万
  • 项目类别:
9.4T/20 cm MRI for Cancer Research
用于癌症研究的 9.4T/20 cm MRI
  • 批准号:
    7389866
  • 财政年份:
    2007
  • 资助金额:
    $ 18.85万
  • 项目类别:
Nuclear Magnetic Resonance Imaging of Tumor Hypoxia
肿瘤缺氧的核磁共振成像
  • 批准号:
    7102436
  • 财政年份:
    2006
  • 资助金额:
    $ 18.85万
  • 项目类别:
Optimizing Chemotherapy Dose Using 31P NMR Spectroscopy
使用 31P NMR 波谱优化化疗剂量
  • 批准号:
    7013706
  • 财政年份:
    2005
  • 资助金额:
    $ 18.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了