HUMAN HEPATOCYTE GROWTH FACTORS
人类肝细胞生长因子
基本信息
- 批准号:2620295
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-01 至 2003-03-31
- 项目状态:已结题
- 来源:
- 关键词:affinity chromatography biological signal transduction cell growth regulation cell type complementary DNA enzyme mechanism fibroblast growth factor fibroblasts gene expression gene targeting growth factor receptors heparan sulfate hepatocellular carcinoma hepatocyte growth factor immunochemistry laboratory mouse laboratory rat liver cells protein isoforms protein kinase protein purification protein structure function proteoglycan receptor expression recombinant DNA site directed mutagenesis tissue /cell culture tissue mosaicism transforming growth factors
项目摘要
Understanding the cellular and molecular mechanisms underlying the order
and precision of compensatory liver regeneration is essential for
understanding and intervention in liver carcinogenesis and toxicology
as well as development of strategies for liver cell transplantation and
gene therapy. Increasing evidence indicates that response to damage by
the normal liver is orchestrated by activation and repression of the
activity of multiple cytokines within the liver rather than external
hormones. Dysfunction of this ordered process results in progression
to malignancy. The FGF family of fourteen ligands, their tyrosine
kinase receptors (FGF-R) (four genes, 16 splice variants resulting in
greater than 100 isoforms) and their heparan sulfate proteoglycan co-
receptors within liver are involved in the transient regulation of
growth and function in both parenchymal and non-parenchymal cells and
the dysfunction leading to hepatoma. This continuation project will
characterize significance of expression of FHF-13 (FGF-13) in liver and
hepatomas. FGF and FGFR specific heparan sulfate proteoglycan (HSPG)
subunits of the FGFR signal transduction complex will be isolated from
liver cells, characterized and cDNA coding for their protein cores will
be identified by FGF and FGFR affinity chromatography. The promiscuity
(or lack of it) of dimerization and functional interaction between FGFR
isotypes will be determined in liver cells by using chimeric
constructions of ectodomain with the TFG beta intracellular kinases.
Impact of the four FGFR intracellular kinase domains and subdomains on
mitogenesis, inhibition of cell growth and phenotype of liver cells will
be determined using chimeric constructions of ectodomain and
intracellular kinase domains. The role of the variant NH2-terminus of
the major liver FGF polypeptide, FGF-1, and its proteolytic modification
will be determined. Gene targeting to the liver in mice will be
employed to dissect the functional role of FGFR1,2,3,4 and FGF-1, on
resting and regenerating liver cell phenotypes as well as effect on
development of hepatomas (collaborations with Dr. S. Thorgeirsson and
Dr. J. Martin). From the results, the expression of FGFR 1,2,3,4 and
their variants will be correlated with time and cell phenotypes in
primary liver cell culture to mark rare transitional cell types related
to mature hepatocytes and bile ductule cell lineages. A unifying
hypothesis is presented on which the project is based in which specific
FGFR and co-factor HSPG are associated with the mature phenotypes
whereas transitional types are characterized by specific co-expression
of FGFR and HSPG isoforms.
了解这些秩序背后的细胞和分子机制
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WALLACE LEE MCKEEHAN其他文献
WALLACE LEE MCKEEHAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WALLACE LEE MCKEEHAN', 18)}}的其他基金
相似海外基金
ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
- 批准号:
6238317 - 财政年份:1997
- 资助金额:
$ 23.25万 - 项目类别:
ROLE OF CELL ADHESION IN BIOLOGICAL SIGNAL TRANSDUCTION
细胞粘附在生物信号转导中的作用
- 批准号:
5210031 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别: