Using advanced AI and Natural Language Processing to accurately and automatically predict hospital length of stay, related patient-NHS resource requirements and improve discharge efficiency
使用先进的人工智能和自然语言处理准确自动预测住院时间、相关患者 NHS 资源需求并提高出院效率
基本信息
- 批准号:84911
- 负责人:
- 金额:$ 50.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
**Challenge to address**At every stage of the Patient inflow and outflow process within the NHS, there are delays which impact on patient care, staff, hospital resources and efficiency. The vast majority of delays are attributable to hospitals and staff not having access to information or that information being incomplete or out-of-date, which in turn leads to the mis-allocation of scarce resources (staff, beds, materials).With no tools or mechanisms to predict admission level or the expected length of stay - current leading platforms only provide time-delayed data - hospitals and staff need to make reactive, subjective decisions regarding beds, staffing and resources. Whilst clinician experience will always be important role, AI has the ability to harness, analyse and support decision-making and resource allocation in a quick, accurate and standardised way (analysing years of big data).**Solution**We are proposing to develop the first highly accurate AI real-time predictor of hospital admission and patient length of stay (AUC\>0.9). Projected benefits include:1. Predict resourcing requirements (bed, staff, equipment, etc) based upon large historical health datasets.2. Predict critical resource supply gaps such as PPE and oxygen (COVID-19 identified failure-point);3. Speed up the discharge of patients by providing accurate real-time information to clinicians.4. Help better manager whole-hospital bed occupancy status and resources in the short, medium and long term.**Innovation**The base information collected will be derived from local electronic health record datasets with the predictive core of the platform based on machine learning models that can accurately analyse both structured (numerical and categorical values) and unstructured (text-based information like triage and physicians' notes) large datasets. Such clinical algorithms will be trained on millions of data points. This process leads to accurate, actionable intelligence for clinicians and management teams to act on.For example, the engine will learn that for a given number of patients presenting with a high NEWS score or low oxygen saturations, a proportion will be admitted. With accumulation of clinical information on COVID-19 patients, increasingly accurate predictions for admission and length of stay will be generated. Such information will then be relayed to clinicians and hospital leads in real-time so that resources can be accurately ordered/allocated, discharge assessments planned and patient's aren't kept in any longer than needed.With delays to discharge purely from untimely information costing the NHS 625,942 bed-days/£92.6m per annum alone, the technology is timely and urgently needed.
**需要解决的挑战**在国民保健制度内病人流入和流出过程的每个阶段,都会出现延误,影响病人护理、工作人员、医院资源和效率。绝大多数延误是由于医院和工作人员无法获得信息,或者这些信息不完整或过时,这反过来又导致稀缺资源(工作人员、床位、材料)的错误分配。由于没有工具或机制来预测入院人数或预期住院时间——目前领先的平台只提供延迟的数据——医院和工作人员需要对床位、人员和资源做出被动的、主观的决定。虽然临床医生的经验始终是重要的角色,但人工智能有能力以快速、准确和标准化的方式(分析多年的大数据)利用、分析和支持决策和资源分配。**解决方案**我们建议开发第一个高度精确的住院和患者住院时间的人工智能实时预测器(AUC\>0.9)。预计收益包括:根据大型历史健康数据集预测资源需求(床位、人员、设备等)。2 .预测PPE和氧气等关键资源供应缺口(COVID-19确定的故障点);通过向临床医生提供准确的实时信息,加快患者出院速度。帮助更好地管理全院短期、中期和长期床位占用状况和资源。**创新**收集的基本信息将来自本地电子健康记录数据集,平台的预测核心基于机器学习模型,可以准确分析结构化(数值和分类值)和非结构化(基于文本的信息,如分诊和医生笔记)大型数据集。这种临床算法将在数以百万计的数据点上进行训练。这一过程为临床医生和管理团队提供了准确、可操作的情报。例如,该引擎将了解到,对于给定数量的高NEWS评分或低血氧饱和度的患者,将会有一定比例的患者被录取。随着新冠肺炎患者临床信息的积累,对入院和住院时间的预测将越来越准确。然后,这些信息将实时传递给临床医生和医院负责人,以便能够准确地订购/分配资源,计划出院评估,并且患者不会超过需要的时间。仅由于信息不及时导致的出院延误每年就给NHS造成625,942个住院日/ 9260万英镑的损失,因此这项技术是及时而迫切需要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
- 批准号:30700835
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
- 批准号:
10110390 - 财政年份:2024
- 资助金额:
$ 50.42万 - 项目类别:
EU-Funded
Intersubjective AI-driven multimodal interaction for advanced user-centric human robot collaborative applications (Jarvis)
主体间人工智能驱动的多模式交互,用于以用户为中心的高级人类机器人协作应用程序 (Jarvis)
- 批准号:
10099311 - 财政年份:2024
- 资助金额:
$ 50.42万 - 项目类别:
EU-Funded
Attent- an advanced edge AI system that is able to detect electrical faults before they happen.
Attent——一种先进的边缘人工智能系统,能够在电气故障发生之前检测到它们。
- 批准号:
10114569 - 财政年份:2024
- 资助金额:
$ 50.42万 - 项目类别:
Collaborative R&D
StormHarvester’s ‘AIFloodPredict’: A unique AI engine and rainfall prediction system to accurately predict advanced flood warning in regions of high vulnerability
StormHarvester 的“AIFloodPredict”:独特的人工智能引擎和降雨量预测系统,可准确预测高度脆弱地区的高级洪水预警
- 批准号:
10045459 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Collaborative R&D
Harmony AI: Natural Language Processing Enabling Advanced Biomanufacturing
Harmony AI:自然语言处理实现先进生物制造
- 批准号:
10761082 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
AI-BASED ADAPTIVE LEARNING in AR and VR ENVIRONMENT FOR ADVANCED CREW TRAINING TO ENHANCE MARITIME SAFETY
AR 和 VR 环境中基于人工智能的自适应学习,用于高级船员培训,以增强海上安全
- 批准号:
2872634 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Advanced sensing and AI for risk detection in rail environments
用于铁路环境风险检测的先进传感和人工智能
- 批准号:
2883891 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Studentship
Enabling In-Clinic Orthodontic Treatment Solutions with Advanced AI-Driven Digital Decision Support Systems and Novel Manufacturing Approaches
通过先进的人工智能驱动的数字决策支持系统和新颖的制造方法实现临床正畸治疗解决方案
- 批准号:
10068611 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Collaborative R&D
Using AI to improve poultry welfare and productivity through advanced lighting solutions
利用人工智能通过先进的照明解决方案提高家禽福利和生产力
- 批准号:
10081703 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 50.42万 - 项目类别:
Continuing Grant














{{item.name}}会员




