Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM

合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理

基本信息

  • 批准号:
    2328805
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The amount of data required to be analyzed by computing systems has been increasing drastically to exascale (i.e., billions of gigabytes) and beyond. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Network (DNN), there is a need for high performance, efficient, fast, and adaptive AI-based big data processing systems. However, those requirements are not sufficiently met by existing computing solutions due to the power-wall in silicon-based semiconductor devices, memory-wall in traditional Von-Neuman computing architecture, and ultra computation- and memory-intensive DNN-based AI algorithms. This project brings together an interdisciplinary group of researchers, with expertise spanning from material science, device fabrication, integrated circuit design, computer architecture, and AI algorithms to undertake innovative device-circuit-algorithm co-design for developing an AI Processing-In-Memory (AI-PIM) system that could leverage the emerging non-volatile magnetic memory technology to implement efficient AI data processing, as well as situation-aware on-chip continual learning. This project targets to significantly improve the AI data processing energy efficiency, with 100X higher efficiency than that of state-of-the-art Graph Processing Units (GPUs). The project will greatly benefit various application areas, such as autonomous driving, robotics, personalized cognitive speech, and smart connected health, etc. This project will also involve education and workforce development activities, including K-12 STEM outreach, undergraduate/graduate training, curriculum development in semiconductor, semiconductor industry internship mentoring, cleanroom fab internships, advance integrated circuit design courses. It will also encourage broader participation of female and under-represented minorities in the microelectronics and semiconductor chip industry. This project will advance knowledge and conduct cross-layer research spanning from emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) material, device, circuit, architecture, to AI algorithm exploration with three main interweaved thrusts. Thrust 1 will explore unconventional spins in SOT materials, e.g., MnPd3, and novel device geometry to fabricate a new design of 2-terminal SOT-MRAM, which simultaneously delivers unlimited endurance, nano-seconds programming time, very high cell density, deterministic programming without external magnetic field, zero leakage, and non-volatility. Leveraging the developed 2-terminal SOT-MRAM, Thrust 2 will design and tape-out an AI Processing-in-Memory (PIM) chip to implement fully digital ‘in-memory sparse multiplication-and-accumulation (MAC)’ operations that support both forward and backward computations of neural networks. Following a co-design methodology, Thrust 3 will first investigate automated network architecture search methods to construct AI model best suitable for given situation while considering our AI-PIM system constraint. This thrust will further develop novel PIM-friendly, compute- and memory-efficient, situation-aware continual learning algorithms that could minimize the power-hungry on-chip weight update (i.e., memory write) complexity, while learning new situation- and user-specific data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
需要由计算系统分析的数据量已经急剧增加到兆兆(exascale)(即,数十亿千兆字节)和更大。与此同时,由于人工智能(AI),特别是深度神经网络(DNN)的蓬勃发展,需要高性能,高效,快速和自适应的基于AI的大数据处理系统。然而,由于硅基半导体器件中的功率墙、传统冯-纽曼计算架构中的存储器墙以及基于DNN的超计算和存储密集型AI算法,现有计算解决方案无法充分满足这些要求。该项目汇集了一个跨学科的研究人员小组,具有材料科学,设备制造,集成电路设计,计算机架构和AI算法的专业知识,以进行创新的设备-电路-算法协同设计,用于开发AI内存处理(AI-PIM)系统,该系统可以利用新兴的非易失性磁存储器技术来实现高效的AI数据处理,以及情况感知的片上持续学习。该项目旨在显著提高AI数据处理的能效,其效率比最先进的图形处理单元(GPU)高出100倍。该项目还将涉及教育和劳动力发展活动,包括K-12 STEM推广,本科生/研究生培训,半导体课程开发,半导体行业实习指导,洁净室工厂实习,先进的集成电路设计课程。它还将鼓励女性和代表性不足的少数族裔更广泛地参与微电子和半导体芯片行业。该项目将推进知识,并进行跨层研究,从新兴的自旋轨道扭矩磁性随机存取存储器(SOT-MRAM)材料,器件,电路,架构,到AI算法探索,三个主要交织的推力。推力1将探索SOT材料中的非常规自旋,例如,MnPd 3和新颖的器件几何结构来制造一种新的双端SOT-MRAM设计,它同时提供无限的耐久性、纳秒级编程时间、非常高的单元密度、无外部磁场的确定性编程、零泄漏和非易失性。利用开发的双端SOT-MRAM,Thrust 2将设计和流片一个AI内存处理(PIM)芯片,以实现全数字的“内存稀疏乘法和累加(MAC)”操作,支持神经网络的前向和后向计算。根据协同设计方法,Thrust 3将首先研究自动网络架构搜索方法,以构建最适合给定情况的AI模型,同时考虑我们的AI-PIM系统约束。这一推动将进一步开发新颖的PIM友好的、计算和存储器高效的、情境感知的持续学习算法,这些算法可以最小化耗电的片上权重更新(即,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiran Chen其他文献

Coca-Cola in process of materialisation: a new materialist perspective on He Xiangyu’s Cola Project
物化过程中的可口可乐:新唯物主义视角何翔宇的可乐计划
  • DOI:
    10.1080/21500894.2023.2196275
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Essays on the Economics of Networks
网络经济学论文集
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiran Chen
  • 通讯作者:
    Yiran Chen
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化

Yiran Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiran Chen', 18)}}的其他基金

Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
  • 批准号:
    2341163
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
  • 批准号:
    2220601
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120333
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
  • 批准号:
    2112562
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
  • 批准号:
    2140247
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
  • 批准号:
    2106828
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
  • 批准号:
    1955246
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
  • 批准号:
    2027324
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
  • 批准号:
    1937435
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
  • 批准号:
    1925514
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328908
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328947
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329063
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了