Enhancing the photostimulation kinetics of channelrhodopsin-2 encoded neurons

增强通道视紫红质 2 编码神经元的光刺激动力学

基本信息

  • 批准号:
    BB/F021127/2
  • 负责人:
  • 金额:
    $ 14.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal aims to investigate a technique to induce electrical activity in neurons with optical means, which has many advantages over present electrical approaches. This work aims to better characterize and improve the kinetics of the light sensitization agent. Electrophysiology itself dates back to the early work by Luigi Galvani who began investigating the effect of electrical stimuli on frog's legs in 1766. Since then, the field has improved with the advent of patch clamp techniques, in-vivo multi-site stimulation electrodes and commercial in-vitro microelectrode arrays. Also, the application has broadened from basic neuroscience to prosthetic applications. Cochlear implants and heart pacemakers have been available for many years. There are however drawbacks to electronic stimulation in-vivo. The electrodes in many cases can degrade, and the electrodes can get fouled or covered with layers of dead tissue decreasing their efficiency. At a basic neuroscience level, large electrical pulses will mask any signally during their moment of stimulus, making certain types of experiments more difficult. Thus if we can optically stimulate neurons, there could be many advantages. There have been attempts at optical neural stimulation for some time, but the field has been significantly advanced with the discoveries of novel opsin membrane proteins; Melanopsin in 1998 and Channelrhodopsin in 2003. Channelrhodopsin (Chr2) has shown particular promise. It is a simple light gated ion channel that opens when illuminated with blue (470nm peak) light. Previous work has shown it engineered both in-vitro and in-vivo. However, there has been a uniform barrier in these publications to stimulate the neurons beyond a rate of 50 spikes per second compared to around 1000Hz, to which they are capable. This proposal aims to fully experimentally characterize the kinetics of the ChR2 via spectroscopy and photostimulated electrical recordings. We have access to novel LED array technology through our collaborators which we will use to investigate the contribution of multiple subcellular components to the electrical signal. We then want to use the experimental findings to build a model of what ultimately ChR2 is and is not capable of.
这项提议旨在研究一种用光学方法在神经元中诱导电活动的技术,它比目前的电方法有许多优点。这项工作旨在更好地表征和改进光敏剂的动力学。电生理学本身可以追溯到路易吉·加尔瓦尼的早期工作,他于1766年开始研究电刺激对青蛙腿的影响。从那时起,随着膜片钳技术、体内多点刺激电极和商业体外微电极阵列的出现,这一领域得到了改善。此外,这种应用已经从基础神经科学扩展到假肢应用。人工耳蜗和心脏起搏器已经问世多年。然而,体内电刺激也有缺点。在许多情况下,电极可能会降解,电极可能会被污染或被一层层死亡组织覆盖,降低了它们的效率。在基础的神经科学层面上,大电脉冲会在刺激的时刻掩盖任何信号,使某些类型的实验变得更加困难。因此,如果我们能用光刺激神经元,可能会有很多好处。光学神经刺激的尝试已经有一段时间了,但随着新的视蛋白膜蛋白的发现,这一领域得到了显著的进步;1998年发现了黑素蛋白,2003年发现了通道视紫红质。通道视紫红质(ChR2)已经显示出特别的前景。这是一种简单的光门离子通道,在蓝色(470 nm峰值)光照射下打开。之前的工作表明,它在体外和体内都是通过工程实现的。然而,在这些出版物中有一个统一的障碍,以超过每秒50个尖峰的速度刺激神经元,而不是大约1000赫兹,他们有能力做到这一点。这项提议旨在通过光谱学和光刺激电子记录来充分实验地表征ChR2的动力学。我们通过我们的合作者获得了新的LED阵列技术,我们将利用这些技术来研究多个亚细胞组件对电信号的贡献。然后,我们想利用实验结果来建立一个模型,说明最终ChR2是什么,以及什么是不能的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A head mounted device stimulator for optogenetic retinal prosthesis.
  • DOI:
    10.1088/1741-2552/aadd55
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Soltan A;Barrett JM;Maaskant P;Armstrong N;Al-Atabany W;Chaudet L;Neil M;Sernagor E;Degenaar P
  • 通讯作者:
    Degenaar P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Degenaar其他文献

A high-performance 8 nV/√Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals
  • DOI:
    10.1186/s12984-019-0629-2
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    Konstantinos Petkos;Simos Koutsoftidis;Thomas Guiho;Patrick Degenaar;Andrew Jackson;Stephen E. Greenwald;Peter Brown;Timothy Denison;Emmanuel M. Drakakis
  • 通讯作者:
    Emmanuel M. Drakakis

Patrick Degenaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Degenaar', 18)}}的其他基金

Symbiotic Intrabody Networks for Bioelectronic Therapeutics
用于生物电子治疗的共生体内网络
  • 批准号:
    EP/W004747/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Research Grant
Enhancing the photostimulation kinetics of channelrhodopsin-2 encoded neurons
增强通道视紫红质 2 编码神经元的光刺激动力学
  • 批准号:
    BB/F021127/1
  • 财政年份:
    2008
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Research Grant
Retinal prosthetics: a novel opto-bionic approach to the restoration of functional vision.
视网膜假体:一种恢复功能性视力的新型光电仿生方法。
  • 批准号:
    EP/F029241/1
  • 财政年份:
    2008
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Research Grant

相似海外基金

Upright two-photon microscope for intravital fluorescence imaging and photostimulation
用于活体荧光成像和光刺激的正置双光子显微镜
  • 批准号:
    537547683
  • 财政年份:
    2024
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Major Research Instrumentation
BRC-BIO: Determining the neural mechanisms regulating photostimulation of migratory physiology and behavior
BRC-BIO:确定调节迁移生理和行为的光刺激的神经机制
  • 批准号:
    2233190
  • 财政年份:
    2024
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Standard Grant
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
  • 批准号:
    10861527
  • 财政年份:
    2023
  • 资助金额:
    $ 14.01万
  • 项目类别:
Two-photon microscope with integrated photostimulation and electrophysiology modules
具有集成光刺激和电生理学模块的双光子显微镜
  • 批准号:
    502670664
  • 财政年份:
    2022
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Major Research Instrumentation
The elucidation of brain regions and signaling pathways underlying cannabinoid-induced seizures
阐明大麻素诱发癫痫发作的大脑区域和信号通路
  • 批准号:
    19K19479
  • 财政年份:
    2019
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Widefield imaging and photostimulation of the brain in awake and anesthetized mice
清醒和麻醉小鼠大脑的宽场成像和光刺激
  • 批准号:
    539277-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Engage Grants Program
Photostimulation mesoscopique multispectrale multidimensionnelle **
光刺激介观多光谱多维**
  • 批准号:
    537994-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Engage Grants Program
Mise en place d'une platefome d'imagerie et de photostimulation pour la souris
图像和光刺激的布局
  • 批准号:
    536897-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 14.01万
  • 项目类别:
    University Undergraduate Student Research Awards
Plateforme multimodale d'imagerie mesoscopique et de photostimulation optogénétique structurée
介观图像和光刺激光学结构多模态平台
  • 批准号:
    RTI-2019-00741
  • 财政年份:
    2018
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Research Tools and Instruments
Exploring optogenetic tools that enable transcranial noninvasive photostimulation.
探索实现经颅无创光刺激的光遗传学工具。
  • 批准号:
    17K19630
  • 财政年份:
    2017
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了