The BBSRC Sustainable Bioenergy Centre (BSBEC): Perennial Bioenergy Crops Programme
BBSRC 可持续生物能源中心 (BSBEC):多年生生物能源作物计划
基本信息
- 批准号:BB/G016216/1
- 负责人:
- 金额:$ 689.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The greenhouse gas (GHG) emissions that result from burning fossil fuels are a major contributor to climate change. Energy usage is increasing globally and alternative forms that are renewable and reduce GHG emissions are urgently needed. New forms of liquid transport fuels are particularly important, as the number of vehicles is increasing rapidly worldwide. Plants are 'biological solar panels'. Through photosynthesis, plants capture sunlight energy and use it to convert carbon molecules from atmospheric carbon dioxide to form carbohydrate. Plants use energy from carbohydrates for growth and the production of new dry matter (biomass). They also store carbohydrates in different forms as reserves. Liquid transport biofuels can be produced from plant carbohydrates by biological conversion processes such as fermentation. These enzymatic processes operate best when the carbohydrates are in simple forms, such as sucrose and starch, as these are easily accessed and broken down. In the UK, bioethanol is produced from sugar and starchy food crops such as sugar beet and wheat, respectively. However, growing such crops requires high inputs of nutrients particularly nitrogen (N) fertilisers. As N fertilisers require fossil fuels to make there is little overall energy saving or reduction in GHG emissions. Producing biofuels from arable crops can also conflict with food production. Perennial biomass crops, such as willows and the grass Miscanthus, are fast growing non-food crops which can produce biomass with little N fertiliser. Biofuels from these crops would give higher energy savings and GHG reductions. However, most of the carbon is in the form of lignocellulose which makes up the plant cell wall and complex linkages make it difficult for enzymes to access the carbon in this form. In the BBSRC Sustainable Bioenergy Centre (BSBEC) Perennial Bioenergy Crops Programme, we will bring together leading experts in plant biology, crop breeding, genomics, biochemistry, biomathematics and bioenergy to over come these limitations and thus underpin the improvements needed in willows and Miscanthus to develop biofuels from plant lignocellulose. Our focus will be on: (1) Optimising biomass yield. We will investigate ways of capturing more energy by developing leaf canopies earlier and extending the growing season and by improving the canopy architecture and we will investigate how carbon is partitioned into different parts of the plant e.g. shoots, roots, organs, tissues, cells and cell walls. (2) Optimising the biomass composition (specifically the accessibility of carbon in cell walls) for processing to biofuels. This will be done by first improving our understanding of biomass composition, how it varies naturally in Miscanthus and willow and how this variation influences the processibility of the biomass. We will also use gene discovery techniques to identify genes that affect cell wall composition and accessibility of the carbon. We have over two decades of experience with breeding and improving willow and Miscanthus. We also have exciting scientific leads in both crops. Our industrial partners (Shell and Ceres) have complementary strengths and expertise that will help develop these and new innovation within the programme and bring it to international markets.
燃烧化石燃料产生的温室气体排放是气候变化的主要原因。全球能源使用量正在增加,迫切需要可再生和减少温室气体排放的替代形式。新型的液体运输燃料尤其重要,因为全世界的车辆数量正在迅速增加。植物是“生物太阳能电池板”。通过光合作用,植物捕获阳光能量,并利用它将大气中的二氧化碳转化为碳水化合物。植物利用碳水化合物的能量来生长和生产新的干物质(生物质)。它们还以不同的形式储存碳水化合物作为储备。液体运输生物燃料可以通过生物转化过程如发酵由植物碳水化合物生产。当碳水化合物处于简单形式时,如蔗糖和淀粉,这些酶促过程运行得最好,因为它们很容易获得和分解。在英国,生物乙醇分别由糖和淀粉类粮食作物(如甜菜和小麦)生产。然而,种植这种作物需要大量的营养物质,特别是氮(N)肥料。由于氮肥需要化石燃料来生产,因此总体上几乎没有节能或减少温室气体排放。用可耕地生产生物燃料也可能与粮食生产发生冲突。多年生生物质作物,如柳树和芒草,是快速生长的非粮食作物,可以产生生物质,几乎没有氮肥。这些作物的生物燃料将带来更高的能源节约和温室气体减排。然而,大多数碳是以木质纤维素的形式存在的,木质纤维素构成了植物细胞壁,复杂的连接使得酶难以以这种形式接近碳。在BBSRC可持续生物能源中心(BSBEC)常年生物能源作物计划中,我们将汇集植物生物学,作物育种,基因组学,生物化学,生物数学和生物能源方面的领先专家,以克服这些限制,从而支持柳树和芒草所需的改进,以从植物木质纤维素中开发生物燃料。我们的重点将是:(1)优化生物质产量。我们将研究通过更早地开发叶冠和延长生长季节以及通过改善冠层结构来捕获更多能量的方法,我们将研究碳如何分配到植物的不同部分,例如芽,根,器官,组织,细胞和细胞壁。(2)优化生物质组成(特别是细胞壁中碳的可及性)以加工成生物燃料。这将通过首先提高我们对生物质组成的理解、它在芒属和杨柳中如何自然变化以及这种变化如何影响生物质的加工性来实现。我们还将使用基因发现技术来识别影响细胞壁组成和碳可及性的基因。我们在培育和改良杨柳和芒草方面有二十多年的经验。我们在这两种作物上也有令人兴奋的科学领先优势。我们的工业合作伙伴(壳牌和谷神星)具有互补的优势和专业知识,将有助于在该计划中开发这些和新的创新,并将其推向国际市场。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification.
- DOI:10.1186/1754-6834-4-13
- 发表时间:2011-05-24
- 期刊:
- 影响因子:6.3
- 作者:Brereton NJ;Pitre FE;Ray MJ;Karp A;Murphy RJ
- 通讯作者:Murphy RJ
A pseudo-3D model to optimise the target traits of light interception in short-rotation coppice willow
优化短旋转矮林柳光拦截目标特性的伪3D模型
- DOI:10.1016/j.agrformet.2012.11.022
- 发表时间:2013
- 期刊:
- 影响因子:6.2
- 作者:Cerasuolo M
- 通讯作者:Cerasuolo M
QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield
- DOI:10.1007/s12155-010-9077-3
- 发表时间:2010-09-01
- 期刊:
- 影响因子:3.6
- 作者:Brereton, Nicholas J. B.;Pitre, Frederic E.;Murphy, Richard J.
- 通讯作者:Murphy, Richard J.
X-ray micro-computed tomography in willow reveals tissue patterning of reaction wood and delay in programmed cell death.
柳树中的X射线微型计算层析成像揭示了反应木材的组织模式和程序性细胞死亡的延迟。
- DOI:10.1186/s12870-015-0438-0
- 发表时间:2015-03-11
- 期刊:
- 影响因子:5.3
- 作者:Brereton NJ;Ahmed F;Sykes D;Ray MJ;Shield I;Karp A;Murphy RJ
- 通讯作者:Murphy RJ
Reaction wood - a key cause of variation in cell wall recalcitrance in willow.
- DOI:10.1186/1754-6834-5-83
- 发表时间:2012-11-22
- 期刊:
- 影响因子:6.3
- 作者:Brereton NJ;Ray MJ;Shield I;Martin P;Karp A;Murphy RJ
- 通讯作者:Murphy RJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Karp其他文献
Expression of shoot-inducing Ti TL-DNA in differentiated tissues of potato (Solanum tuberosum cv Maris Bard)
马铃薯 (Solanum tuberosum cv Maris Bard) 分化组织中芽诱导 Ti TL-DNA 的表达
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:5.1
- 作者:
Michael M. Burrell;David Twell;Angela Karp;G. Ooms - 通讯作者:
G. Ooms
Secondary cell wall composition and candidate gene expression in developing willow (Salix purpurea) stems
柳树(Salix purpurea)茎的次生细胞壁组成和候选基因表达
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.3
- 作者:
Yongfang Wan;Cristina Gritsch;T. Tryfona;Mike J. Ray;Ambrose Andongabo;K. Hassani‐Pak;Huw D. Jones;Paul Dupree;Angela Karp;Peter R. Shewry;R. Mitchell - 通讯作者:
R. Mitchell
A comparison of chromosome instability in cell suspensions of diploid, tetraploid and hexaploid wheats
二倍体、四倍体和六倍体小麦细胞悬浮液中染色体不稳定性的比较
- DOI:
10.1038/hdy.1993.28 - 发表时间:
1993-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Mark Winfield;Michael R Davey;Angela Karp - 通讯作者:
Angela Karp
A comparative study of the mitochondrial genome organization in in vitro cultures of diploid, tetraploid, and hexaploid Triticum species
二倍体、四倍体和六倍体小麦种体外培养物线粒体基因组组织的比较研究
- DOI:
10.1007/bf00224100 - 发表时间:
1996 - 期刊:
- 影响因子:5.4
- 作者:
Caroline Hartmann;M. Winfield;Fabienne Corre;Michael R. Davey;A. Rode;Angela Karp - 通讯作者:
Angela Karp
The effects of nucleotype and genotype upon pollen grain development in Hyacinth and Scilla
风信子和风信子花粉粒发育中核型和基因型的影响
- DOI:
10.1038/hdy.1982.30 - 发表时间:
1982-04-01 - 期刊:
- 影响因子:3.900
- 作者:
Angela Karp;H Rees;A W Jewell - 通讯作者:
A W Jewell
Angela Karp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Karp', 18)}}的其他基金
Open Access Block Award 2024 - Rothamsted Research
2024 年开放获取区块奖 - Rothamsted Research
- 批准号:
EP/Z531777/1 - 财政年份:2024
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Open Access Block Award 2023 - Rothamsted Research
2023 年开放获取区块奖 - Rothamsted Research
- 批准号:
EP/Y529321/1 - 财政年份:2023
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Open Access Block Award 2022 - Rothamsted Research
2022 年开放获取区块奖 - Rothamsted Research
- 批准号:
EP/X527373/1 - 财政年份:2022
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
21ROMITIGATIONFUND Rothamsted
21Rothamsted ROMITIGATIONFUND
- 批准号:
BB/W510543/1 - 财政年份:2021
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
BBSRC NPIF Innovation Fellows Rothamstead Research
BBSRC NPIF 创新研究员 Rothamstead Research
- 批准号:
BB/T508093/1 - 财政年份:2019
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
BBSRC AgRIA IAA Rothamsted Research
BBSRC AgRIA IAA 洛桑研究中心
- 批准号:
BB/S506801/1 - 财政年份:2018
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Characterisation of a genetic region that conditions resistance to viral fungal and plasmodiophorid plant pathogens
调节对病毒真菌和胞质体植物病原体的抗性的遗传区域的表征
- 批准号:
BB/H022821/1 - 财政年份:2010
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Towards targeted breeding of a European SRC willow crop for diverse environments and future climates (BREDNET-SRC)
针对不同环境和未来气候的欧洲 SRC 柳树作物的定向育种 (BREDNET-SRC)
- 批准号:
BB/G00580X/1 - 财政年份:2009
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Accelerating breeding for biomass yield in short rotation coppice willow by exploiting knowledge of shoot development in Arabidopsis
利用拟南芥芽发育知识加速短轮伐期矮林柳生物量产量的育种
- 批准号:
BB/E006833/1 - 财政年份:2007
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Optimising the development of the energy grass Miscanthus through manipulation of flowering time
通过控制开花时间优化能源草芒草的发育
- 批准号:
BB/E014682/1 - 财政年份:2007
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
相似海外基金
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
RGPIN-2018-05755 - 财政年份:2022
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Grants Program - Individual
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
RGPIN-2018-05755 - 财政年份:2021
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Grants Program - Individual
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
RGPIN-2018-05755 - 财政年份:2020
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Grants Program - Individual
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
RGPIN-2018-05755 - 财政年份:2019
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Grants Program - Individual
Sustainable algal biomass-bioenergy production
可持续的藻类生物质-生物能源生产
- 批准号:
539164-2019 - 财政年份:2019
- 资助金额:
$ 689.29万 - 项目类别:
University Undergraduate Student Research Awards
An integrated lignocellulosic bioenergy and bioproduct platform from sustainable bioremediation opportunities
来自可持续生物修复机会的综合木质纤维素生物能源和生物产品平台
- 批准号:
506680-2017 - 财政年份:2019
- 资助金额:
$ 689.29万 - 项目类别:
Strategic Projects - Group
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
RGPIN-2018-05755 - 财政年份:2018
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Grants Program - Individual
Can degraded trees serve as sustainable feedstock for forest bioenergy production?
退化的树木可以作为森林生物能源生产的可持续原料吗?
- 批准号:
DGECR-2018-00074 - 财政年份:2018
- 资助金额:
$ 689.29万 - 项目类别:
Discovery Launch Supplement
Bioenergy waste residues as alternatives to conventional inorganic fertilisers for sustainable food production in sub-Saharan Africa
生物能源废渣作为传统无机肥料的替代品,用于撒哈拉以南非洲的可持续粮食生产
- 批准号:
NE/R005230/1 - 财政年份:2018
- 资助金额:
$ 689.29万 - 项目类别:
Research Grant
Manipulating microalgal-to-microbial carbon transfer for sustainable bioenergy and bioproducts
操纵微藻到微生物的碳转移以获得可持续的生物能源和生物产品
- 批准号:
2110800 - 财政年份:2018
- 资助金额:
$ 689.29万 - 项目类别:
Studentship