Unified probabilistic modelling of adaptive spatial-temporal structures in the human brain
人脑自适应时空结构的统一概率建模
基本信息
- 批准号:BB/H012508/1
- 负责人:
- 金额:$ 78.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning from experience and adapting our behaviour to new situations is a fundamental skill for our everyday interactions. But what are the brain plasticity mechanisms that mediate an individual's ability to make progress during training on complex tasks? What is it that differentiates `good' from `poor' learners in their ability to adapt? Recent advances in functional brain imaging technology provide us with the unique opportunity to study how the human brain changes with learning. However, the existing methods focus predominantly on modelling brain activity data within a single session rather than across training sessions. As such, these methods are not capable of capturing larger scale dependencies emerging in brain activity as training progresses. We will develop a novel methodology that allows holistic unified modelling of a series of brain imaging data measured during the course of learning. Using this methodology we will study brain changes that result from extensive training on complex visual tasks. Our work will offer scientists and practitioners advanced tools for using brain activity measurements to understand the brain learning mechanisms and how they improve our ability to make complex decisions. The proposed methodology may have predictive power for making inferences about 'prototypical' learning patterns that can be used to predict adaptive behaviour in individuals with different learning strategies and design training schemes tailored to the individuals' abilities and needs. Hence our findings have potential implications for the design of dedicated training programmes that take into account an individual's learning capacity. Such programmes may have applications in education or intervention and rehabilitation in normal and pathological development and ageing (e.g. stroke, neurodegenerative disorders).
从经验中学习并使我们的行为适应新的情况是我们日常互动的一项基本技能。但是,在复杂任务的训练中,调节个体取得进步能力的大脑可塑性机制是什么?“好的”和“差的”学习者在适应能力上有什么区别?最近脑功能成像技术的进步为我们提供了独特的机会来研究人类大脑如何随着学习而变化。然而,现有的方法主要集中在对单个会话内的大脑活动数据进行建模,而不是跨培训会话。因此,随着训练的进行,这些方法不能捕获大脑活动中出现的更大规模的依赖关系。我们将开发一种新的方法,允许对学习过程中测量的一系列脑成像数据进行整体统一建模。使用这种方法,我们将研究复杂视觉任务的广泛训练所导致的大脑变化。我们的工作将为科学家和从业者提供先进的工具,使用大脑活动测量来了解大脑学习机制,以及它们如何提高我们做出复杂决策的能力。建议的方法可能具有预测能力,可以推断出可以用来预测具有不同学习策略的个人的适应行为的“原型”学习模式,并根据个人的能力和需求设计培训方案。因此,我们的发现对设计考虑到个人学习能力的专门培训方案具有潜在的意义。这些方案可应用于正常和病理性发育和老龄化(如中风、神经退行性疾病)的教育或干预和康复。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment.
- DOI:10.3389/fncom.2016.00117
- 发表时间:2016
- 期刊:
- 影响因子:3.2
- 作者:Alahmadi HH;Shen Y;Fouad S;Luft CD;Bentham P;Kourtzi Z;Tino P
- 通讯作者:Tino P
Does money matter in inflation forecasting?
- DOI:10.1016/j.physa.2010.06.015
- 发表时间:2010-11-01
- 期刊:
- 影响因子:3.3
- 作者:Binner, J. M.;Tino, P.;Kendall, G.
- 通讯作者:Kendall, G.
Learning to predict: exposure to temporal sequences facilitates prediction of future events.
- DOI:10.1016/j.visres.2013.10.017
- 发表时间:2014-06
- 期刊:
- 影响因子:1.8
- 作者:Baker, Rosalind;Dexter, Matthew;Hardwicke, Tom E.;Goldstone, Aimee;Kourtzi, Zoe
- 通讯作者:Kourtzi, Zoe
Training transfers the limits on perception from parietal to ventral cortex.
- DOI:10.1016/j.cub.2014.08.058
- 发表时间:2014-10-20
- 期刊:
- 影响因子:0
- 作者:Chang DH;Mevorach C;Kourtzi Z;Welchman AE
- 通讯作者:Welchman AE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Tino其他文献
AI-guided patient stratification improves outcomes and efficiency in the AMARANTH Alzheimer’s Disease clinical trial
AI 引导的患者分层改善了 AMARANTH 阿尔茨海默病临床试验的结果和效率
- DOI:
10.1038/s41467-025-61355-3 - 发表时间:
2025-07-17 - 期刊:
- 影响因子:15.700
- 作者:
Delshad Vaghari;Gayathri Mohankumar;Keith Tan;Andrew Lowe;Craig Shering;Peter Tino;Zoe Kourtzi - 通讯作者:
Zoe Kourtzi
Machine learning reveals sex differences in distinguishing between conduct-disordered and neurotypical youth based on emotion processing dysfunction
- DOI:
10.1186/s12888-025-06536-6 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:3.600
- 作者:
Gregor Kohls;Erik M. Elster;Peter Tino;Graeme Fairchild;Christina Stadler;Arne Popma;Christine M. Freitag;Stephane A. De Brito;Kerstin Konrad;Ruth Pauli - 通讯作者:
Ruth Pauli
The Benefits of Modelling Slack Variables in SVMs
在 SVM 中建模松弛变量的好处
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.9
- 作者:
FengZhen Tang;Peter Tino;Pedro A.G. Pena;Huanhuan Chen - 通讯作者:
Huanhuan Chen
Emerging opportunities and challenges for the future of reservoir computing
用于水库计算的未来的新兴的机会和挑战
- DOI:
10.1038/s41467-024-45187-1 - 发表时间:
2024-03-06 - 期刊:
- 影响因子:15.700
- 作者:
Min Yan;Can Huang;Peter Bienstman;Peter Tino;Wei Lin;Jie Sun - 通讯作者:
Jie Sun
Learning in the Model Space for Cognitive Fault Diagnosis
认知故障诊断模型空间中的学习
- DOI:
10.1109/tnnls.2013.2256797 - 发表时间:
2014 - 期刊:
- 影响因子:10.4
- 作者:
HuanHuan Chen;Peter Tino;Ali Rodan;Xin Yao - 通讯作者:
Xin Yao
Peter Tino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Tino', 18)}}的其他基金
Exploring the Deep Universe by Computational Analysis of Data from Observations
通过观测数据的计算分析探索宇宙深处
- 批准号:
EP/Y031032/1 - 财政年份:2024
- 资助金额:
$ 78.2万 - 项目类别:
Research Grant
Personalised Medicine through Learning in the Model Space
通过模型空间学习实现个性化医疗
- 批准号:
EP/L000296/1 - 财政年份:2013
- 资助金额:
$ 78.2万 - 项目类别:
Research Grant
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
- 批准号:
2887257 - 财政年份:2023
- 资助金额:
$ 78.2万 - 项目类别:
Studentship
Probabilistic modelling and Quantification of Natural Hazards and Multi-risk at Site and Regional levels
现场和区域层面自然灾害和多重风险的概率建模和量化
- 批准号:
RGPIN-2022-04702 - 财政年份:2022
- 资助金额:
$ 78.2万 - 项目类别:
Discovery Grants Program - Individual
Evaluating the network stability using probabilistic modelling of the future e-mobility ecosystem in urban areas
使用城市地区未来电动交通生态系统的概率模型评估网络稳定性
- 批准号:
2690222 - 财政年份:2022
- 资助金额:
$ 78.2万 - 项目类别:
Studentship
Probabilistic modelling of mutations as a function of both damage and DNA repair to understand cancer evolution
将突变作为损伤和 DNA 修复的函数进行概率建模,以了解癌症的进化
- 批准号:
569004-2022 - 财政年份:2022
- 资助金额:
$ 78.2万 - 项目类别:
Postgraduate Scholarships - Doctoral
Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling
根据地震、重力、地形数据和岩石学模型的概率联合反演南极洲的热力和成分结构
- 批准号:
2203487 - 财政年份:2022
- 资助金额:
$ 78.2万 - 项目类别:
Standard Grant
Modelling the shape of Triton's atmosphere using photometric light curves from satellite constellations and probabilistic estimation methods
使用卫星星座的光度曲线和概率估计方法对海卫一的大气形状进行建模
- 批准号:
532704-2019 - 财政年份:2021
- 资助金额:
$ 78.2万 - 项目类别:
Postgraduate Scholarships - Doctoral
Multiscale and probabilistic modelling of progressive slope failure
渐进式边坡破坏的多尺度和概率建模
- 批准号:
EP/V028723/1 - 财政年份:2021
- 资助金额:
$ 78.2万 - 项目类别:
Research Grant
A Unified Probabilistic Famework of Financial Distress Modelling
财务困境建模的统一概率框架
- 批准号:
20K13536 - 财政年份:2020
- 资助金额:
$ 78.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Landslide mobility characterization and probabilistic modelling of landslide runout.
滑坡流动性表征和滑坡跳动的概率建模。
- 批准号:
516701-2018 - 财政年份:2020
- 资助金额:
$ 78.2万 - 项目类别:
Postgraduate Scholarships - Doctoral
Physically-informed probabilistic modelling of air pollution in Kampala using a low cost sensor network
使用低成本传感器网络对坎帕拉空气污染进行基于物理的概率建模
- 批准号:
EP/T00343X/2 - 财政年份:2020
- 资助金额:
$ 78.2万 - 项目类别:
Research Grant