Alpha-helical peptide hydrogels as instructive scaffolds for 3D cell culture and tissue engineering
α-螺旋肽水凝胶作为 3D 细胞培养和组织工程的指导支架
基本信息
- 批准号:BB/H01716X/1
- 负责人:
- 金额:$ 84.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our research is concerned with understanding how biology builds functional structures using molecular building blocks. We apply this understanding to make new structures from molecules accessible in the lab. In particular, for this proposal, we are interested in making fibrous structures at the scale of billionths to millionths of a metre. With such 'nanofibres' in hand, we wish to construct 'hydrogels'-that is, entangled networks of fibres that are >99% water. These could be used to capture useful molecules (such as growth factors and nutrients), and then to support cell and tissue growth in the laboratory. These new biomaterials would have long-term uses in the area of tissue engineering. Our inspiration comes from biology, which uses fibrous materials to make structures with a wide variety of functions both within and outside cells; for instance, to give shape and stability to cells; to provide molecular highways within cells; and to act as the glue that hold cells together o form tissues, the so-called extracellular matrix (ECM). In our proposed research, we aim to make simpler, or stripped-down and well-understood materials that capture the key properties and biological functions of the ECM. It is early in the development of our understanding of the principles upon which biological components--proteins, cells, tissues etc--are built; and we are only just beginning to tap the potential of this knowledge. Endeavours to reduce biological complexity to principles and manageable building blocks, and then piece these together to form new materials and systems are known as 'synthetic biology'. This is a very new and exciting science. There's a catch, however: we're not very good at it at the moment. A key feature of Nature is that it uses 'self-assembly' to piece its components together--i.e., the biomolecules are somehow programmed to interact and cooperate in precise ways--which is very different from how our everyday technologies are currently built. We are interested in one type of protein that directs and cements interactions between protein chains. This is called the coiled coil. Amongst other things, it is responsible for making structures like porcupine quills. Our interests are down a few orders of magnitude at the scale of billionths to millionths of a metre. We have succeeded in making fibrous structures, like the quills, in the lab on this scale. Recently, we have learnt how to make these fibres more flexible, and, as result, they interact and entangle to make the gels. Our next steps, as proposed here, are: to make the fibres and gels more reliably and cheaply; to alter their physical properties; to decorate them with other functional molecules; and, ultimately, to test how cells grow on, and respond to them. The aim of this proposal is bring together the necessary expertise and create the tools to make these steps. Why do this? The famous physicist Richard Feynman once remarked that what he could not build, he did not understand. This is the principle that we have adopted for our research: we plan to look at natural biological systems, learn from them, and then test our understanding by designing and attempting to construct new simplified systems. This will not be easy and there is a risk of failure. However, the potential rewards are high: we stand to learn how some of biology's components assemble at the very least; and this understanding can then be applied by us and by others to create new biomaterials that might eventually find applications in other fundamental science and medicine.
我们的研究关注于理解生物学是如何利用分子构建块构建功能结构的。我们运用这一认识,在实验室中从分子中获得新的结构。特别地,对于这个提议,我们感兴趣的是在十亿分之一到百万分之一米的尺度上制造纤维结构。有了这样的“纳米纤维”,我们希望构建“水凝胶”——也就是说,由99%的水组成的纤维纠缠网络。这些可以用来捕获有用的分子(如生长因子和营养物质),然后在实验室中支持细胞和组织的生长。这些新的生物材料将在组织工程领域有长期的用途。我们的灵感来自于生物学,它使用纤维材料来制造细胞内外具有多种功能的结构;例如,赋予细胞形状和稳定性;提供细胞内的分子通道;并起到粘合细胞形成组织的作用,即所谓的细胞外基质(ECM)。在我们提出的研究中,我们的目标是制造更简单,或精简和易于理解的材料,以捕获ECM的关键特性和生物学功能。我们对蛋白质、细胞、组织等生物成分赖以形成的原理的理解还处于早期阶段;我们才刚刚开始挖掘这些知识的潜力。努力将生物复杂性简化为原则和可管理的构建模块,然后将它们拼凑在一起形成新的材料和系统,这被称为“合成生物学”。这是一门非常新的令人兴奋的科学。然而,这里有一个问题:我们目前还不太擅长这个。“自然”的一个关键特征是它使用“自我组装”将其组成部分拼凑在一起。,生物分子以某种方式被编程以精确的方式相互作用和合作——这与我们目前日常技术的构建方式非常不同。我们感兴趣的是一种蛋白质,它可以指导和巩固蛋白质链之间的相互作用。这被称为盘绕线圈。除此之外,它还负责制造豪猪的刺等结构。我们的兴趣下降了几个数量级在十亿分之一米到百万分之一米的尺度上。我们已经在实验室里成功地制造出了这种规模的纤维结构,比如羽毛。最近,我们已经学会了如何使这些纤维更灵活,因此,它们相互作用并缠绕在一起,形成凝胶。我们接下来的步骤,正如这里提出的,是:使纤维和凝胶更可靠、更便宜;改变:改变它们的物理性质;用其他功能分子修饰它们;最终,测试细胞是如何生长的,以及对它们的反应。这项建议的目的是汇集必要的专业知识,并创造工具来实现这些步骤。为什么要这样做?著名物理学家理查德·费曼曾经说过,他造不出的东西,就是他不理解的东西。这是我们在研究中采用的原则:我们计划观察自然生物系统,从中学习,然后通过设计和尝试构建新的简化系统来测试我们的理解。这并不容易,而且有失败的风险。然而,潜在的回报是很高的:我们至少可以了解一些生物成分是如何组装的;这种理解可以被我们和其他人应用于创造新的生物材料,最终可能会在其他基础科学和医学中得到应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dek Woolfson其他文献
Microfluidic Device for Controlled Fluid Switching to be used with Chemically Powered Molecular Motors on Surface Bound Tracks
- DOI:
10.1016/j.bpj.2011.11.3888 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Cassandra Niman;Jason P. Beech;Nancy R. Forde;Paul Curmi;Dek Woolfson;Jonas O. Tegenfeldt;Heiner Linke - 通讯作者:
Heiner Linke
The Lawnmower: An Autonomous Synthetic Protein Motor
- DOI:
10.1016/j.bpj.2012.11.3021 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
Laleh Samii;Suzana Kovacic;Cassandra Niman;Heiner Linke;Dek Woolfson;Paul M.G. Curmi;Martin J. Zuckermann;Nancy R. Forde - 通讯作者:
Nancy R. Forde
Dek Woolfson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dek Woolfson', 18)}}的其他基金
BrisEngBio: From Synthetic to Engineering Biology at Bristol
BrisEngBio:布里斯托尔从合成生物学到工程生物学
- 批准号:
BB/W013959/1 - 财政年份:2022
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
Coiled-coil Technology for Regulating Intracellular Protein-protein Interactions
用于调节细胞内蛋白质-蛋白质相互作用的卷曲螺旋技术
- 批准号:
BB/V006231/1 - 财政年份:2021
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
19-BBSRC-NSF/BIO. Leveraging synthetic biology to probe the rules of cell morphogenesis.
19-BBSRC-NSF/BIO。
- 批准号:
BB/V004220/1 - 财政年份:2021
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
CuPiD: A European Network in Computational Protein Design
CuPiD:欧洲计算蛋白质设计网络
- 批准号:
BB/T020105/1 - 财政年份:2021
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
Rational computational protein design in ISAMBARD: new approaches, folds and functions
ISAMBAARD 中的合理计算蛋白质设计:新方法、折叠和功能
- 批准号:
BB/R00661X/1 - 财政年份:2018
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
SAGEs: Self-assembled peptide-based cages for the presentation, encapsulation and delivery of bioactive molecules to cells in culture
SAGE:基于肽的自组装笼,用于将生物活性分子呈现、封装和递送至培养中的细胞
- 批准号:
BB/L010518/1 - 财政年份:2014
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
BrisSynBio: Bristol Centre for Synthetic Biology
BrisSynBio:布里斯托尔合成生物学中心
- 批准号:
BB/L01386X/1 - 财政年份:2014
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
14-ERASynBio: BioMolecular Origami
14-ERASynBio:生物分子折纸
- 批准号:
BB/M005615/1 - 财政年份:2014
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
Hexaporins: the rational design of transmembrane channels
六通道蛋白:跨膜通道的合理设计
- 批准号:
BB/J008990/1 - 财政年份:2012
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
Electron Delocalization in Polypeptide Structure and Stability
多肽结构和稳定性中的电子离域
- 批准号:
EP/J001430/1 - 财政年份:2011
- 资助金额:
$ 84.1万 - 项目类别:
Research Grant
相似海外基金
Insight into pathological self assembly using alpha-helical mimetics
使用 α 螺旋模拟物洞察病理自组装
- 批准号:
8635365 - 财政年份:2011
- 资助金额:
$ 84.1万 - 项目类别:
Insight into pathological self assembly using alpha-helical mimetics
使用α螺旋模拟物洞察病理自组装
- 批准号:
8101472 - 财政年份:2011
- 资助金额:
$ 84.1万 - 项目类别:
Insight into pathological self assembly using alpha-helical mimetics
使用α螺旋模拟物洞察病理自组装
- 批准号:
8442327 - 财政年份:2011
- 资助金额:
$ 84.1万 - 项目类别:
Insight into pathological self assembly using alpha-helical mimetics
使用α螺旋模拟物洞察病理自组装
- 批准号:
8243517 - 财政年份:2011
- 资助金额:
$ 84.1万 - 项目类别:
Libraries of Uniquely Folded Alpha-Helical Proteins
独特折叠的α螺旋蛋白质文库
- 批准号:
6636606 - 财政年份:2001
- 资助金额:
$ 84.1万 - 项目类别:
Libraries of Uniquely Folded Alpha-Helical Proteins
独特折叠的α螺旋蛋白质文库
- 批准号:
6318449 - 财政年份:2001
- 资助金额:
$ 84.1万 - 项目类别:
Libraries of Uniquely Folded Alpha-Helical Proteins
独特折叠的α螺旋蛋白质文库
- 批准号:
6520444 - 财政年份:2001
- 资助金额:
$ 84.1万 - 项目类别:
Libraries of Uniquely Folded Alpha-Helical Proteins
独特折叠的α螺旋蛋白质文库
- 批准号:
6725369 - 财政年份:2001
- 资助金额:
$ 84.1万 - 项目类别: