Molecular mechanism of environmental stress sensing by bacterial Zinc-containing Anti-Sigma factors
细菌含锌Anti-Sigma因子感知环境应激的分子机制
基本信息
- 批准号:BB/I008691/1
- 负责人:
- 金额:$ 53.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A critical evolved property of all cells is their ability to sense and respond to environmental change. This is especially true of bacteria that often have to live in inhospitable and fluctuating environments. An active yet still poorly understood area of research is how bacteria sense environmental change and the mechanisms they deploy to respond to such changes. This proposal focuses on these questions in the soil-living organism Streptomyces coelicolor, which is an ideal model for two reasons. First, its genome sequence shows the organism is well armed with genes that encode proteins likely to be involved in responding to environmental stresses but the mode of action of these have yet to be described. Second, the genus Streptomyces is the source of a multitude of commercially important antibiotics, anticancer agents and immunosuppressants, the production of which are likely linked to the organism's ability to respond to environmental changes and so by understanding the underlying mechanisms we may be able to affect the production of such therapeutic molecules. Our proposal focuses on one specific group of stress sensors which are in fact complexes of two proteins: One is a sigma factor that directs the main cellular enzyme responsible for the production of specific RNA molecules (RNA polymerase) to produce proteins which allow the cell to respond to environmental change; the other is an anti-sigma factor that binds to the sigma factor and blocks its ability to bind RNA polymerase. It is the anti-sigma factor's job to sense the environmental stress. It is known that this sensing mechanism involves the disabling of the anti-sigma factor, which releases the sigma factor to coordinate the cellular response to the stress. Although it has been over 15 years since we first described the presence of what is now recognised as a widespread group of ExtraCytoplasmic Function (ECF) sigma factors (Streptomyces alone has over 50 of them encoded in its genome), we still know surprisingly little about how anti-sigma factors bind ECF sigma factors or how environmental stresses disable them. We have recently uncovered the mechanism by which Streptomyces responds to a particular form of oxidative stress (the main causative agent of ageing) known as disulfide stress. Disulfides are covalent bonds formed between the sulfur atoms of two cysteine amino acids, which are ordinarily found in proteins that get secreted from cells (e.g. hormones such as insulin) to help stabilise them in the harsh extracellular environment. Such bonds however are toxic for proteins inside the crowded environment of the cell cytoplasm where they can cause the inactivation of enzymes and the aggregation of proteins. Streptomyces responds to the appearance of intracellular disulfide bonds by inactivating a specific anti-sigma factor (RsrA), which releases its sigma factor, sigma R, to mount an anti-oxidative response. We have determined the three dimensional structure of RsrA in its resting state, i.e. before it binds sigma factor. Comparison to related protein complexes reveals that RsrA engages in a new form of molecular recognition in which the protein essentially turns itself inside-out to bind sigma R. We have also determined the structure of the deactivated form of RsrA in which an internal disulfide blocks the ability of the protein to turn inside-out. This proposal aims to capitalise on these novel observations. We will investigate how RsrA turns inside-out to bind its sigma factor. We rationalise that this mechanism could be the basis for other forms of environmental stress sensing by this large group of cellular regulators. We will therefore uncover the activation signals for a select few anti-sigma factor/sigma factor pairings, which have yet to be studied, and compare them to the RsrA/sigma R complex. Our goal is to determine if the mechanism we have discovered represents a new paradigm in environmental stress sensing in microbes.
所有细胞的一个关键进化特性是它们感知和响应环境变化的能力。对于那些经常生活在恶劣和波动环境中的细菌来说,这一点尤其如此。一个活跃但仍然知之甚少的研究领域是细菌如何感知环境变化以及它们对这些变化做出反应的机制。这项建议的重点是这些问题的土壤生物链霉菌coelicolor,这是一个理想的模式,有两个原因。首先,它的基因组序列显示,这种生物体拥有很好的基因,这些基因编码的蛋白质可能参与对环境压力的反应,但这些蛋白质的作用方式尚未被描述。其次,链霉菌属是许多商业上重要的抗生素,抗癌剂和免疫抑制剂的来源,其生产可能与生物体对环境变化的反应能力有关,因此通过了解潜在的机制,我们可能能够影响这种治疗分子的生产。我们的建议集中在一组特定的压力传感器上,它们实际上是两种蛋白质的复合物:一种是sigma因子,它指导负责产生特定RNA分子(RNA聚合酶)的主要细胞酶产生蛋白质,使细胞能够对环境变化做出反应;另一种是anti-sigma因子,它与sigma因子结合并阻止其结合RNA聚合酶的能力。反西格马因子的工作是感知环境压力。已知这种传感机制涉及反西格玛因子的禁用,其释放西格玛因子以协调细胞对应激的反应。虽然它已经超过15年,因为我们第一次描述了现在被认为是一个广泛的组细胞质外功能(ECF)σ因子的存在(链霉菌单独有超过50个编码在其基因组中),我们仍然知道令人惊讶的是,反σ因子如何结合ECF σ因子或环境压力如何禁用它们。我们最近发现了链霉菌对一种特殊形式的氧化应激(衰老的主要原因)的反应机制,称为二硫化物应激。二硫化物是两个半胱氨酸氨基酸的硫原子之间形成的共价键,通常存在于从细胞分泌的蛋白质中(例如激素,如胰岛素),以帮助在恶劣的细胞外环境中稳定它们。然而,这种键对于细胞质的拥挤环境内的蛋白质是有毒的,在那里它们可以导致酶的失活和蛋白质的聚集。链霉菌通过使特定的抗σ因子(RsrA)失活来响应细胞内二硫键的出现,所述抗σ因子(RsrA)释放其σ因子σ R以产生抗氧化反应。我们已经确定了RsrA在其静息状态下的三维结构,即在其结合σ因子之前。与相关蛋白质复合物的比较表明,RsrA参与了一种新形式的分子识别,其中蛋白质基本上将其自身翻转以结合sigma R。我们还确定了RsrA失活形式的结构,其中内部二硫键阻断了蛋白质由内而外翻转的能力。这项提案旨在利用这些新的观察结果。我们将研究RsrA如何由内而外地结合其sigma因子。我们合理化,这种机制可能是其他形式的环境压力传感的基础上,这一大群细胞调节。因此,我们将揭示激活信号的选择几个反西格玛因子/西格玛因子配对,这还有待研究,并将它们与RsrA/西格玛R复杂。我们的目标是确定我们发现的机制是否代表了微生物环境压力传感的新范式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core.
- DOI:10.1038/ncomms12194
- 发表时间:2016-07-19
- 期刊:
- 影响因子:16.6
- 作者:Rajasekar KV;Zdanowski K;Yan J;Hopper JT;Francis ML;Seepersad C;Sharp C;Pecqueur L;Werner JM;Robinson CV;Mohammed S;Potts JR;Kleanthous C
- 通讯作者:Kleanthous C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Kleanthous其他文献
Nanoscale Protein Interactions Determine the Mesoscale Dynamic Organisation of Biomembranes
- DOI:
10.1016/j.bpj.2017.11.2163 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Anna L. Duncan;Matthieu Chavent;Patrice Rassam;Jean Hélie;Tyler Reddy;Oliver Birkholz;Dmitry Belyaev;Ben Hambly;Jacob Piehler;Colin Kleanthous;Mark S.P. Sansom - 通讯作者:
Mark S.P. Sansom
Force Triggered Dissociation of the Highly Avid E9:Im9 Complex
- DOI:
10.1016/j.bpj.2012.11.3174 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
David Brockwell;Oliver Farrance;Renata Kaminska;Sasha Derrington;Colin Kleanthous;Sheena Radford - 通讯作者:
Sheena Radford
MPSA abstracts
- DOI:
10.1007/bf01898856 - 发表时间:
1994-07-01 - 期刊:
- 影响因子:1.400
- 作者:
Mahmoud Aminlari;Thomas Asquith;Katherine Sarlo;Jerome M. Bailey;Oanh Tu;Gilbert Issai;Alice Ha;John E. Shively;Alexander W. Bell;Nicole C. Baur;John J. M. Bergeron;Wei -Jia Ou;David Y. Thomas;Katherine Cianflone;Allain Baldo;Maxwell T. Hincke;Richard L. Momparler;Josée Laliberté;David M. P. Thomson;M. Sutherland;Vladimir Besada;Javier Gonzalez;Gabriel Padron;Hilda Garay;Osvaldo Reyes;Toshifumi Takao;Yasutsugu Shimonishi;Rainer Bischoff;Dominique Roecklin;Bernadette Bouchon;Klaus Klarskov;Alain Van Dorsselaer;Patricia G. Brake;Anne Pacitti;Terry Higgins;Panos Stevis;John Malinowski;Sue McElhiney;Janes Huang;Christine Vestal;Scott D. Buckel;Tracy Stevenson;Joseph A. Loo;Martin Caffrey;Jin Wang;Carmichael J. A. Wallace;Ian Clark-Lewis;C. A. Carothers Carraway;J. Huang;Y. Li;S. -H. Juang;A. Gallo;B. J. Mayer;K. L. Carraway;Patrick L. Coleman;Daniel Sarpong;David W. Deerfield;Amanda Holland-Minkley;John D. Hempel;Hugh B. Nicholas;Nancy D. Denslow;Leroy C. Folmar;Craig V. Sullivan;James D. Dixon;Jonathan P. Mark;Christopher P. Elicone;Simin D. Maleknia;Brian F. McGuinness;Fred E. Regnier;Noubar B. Afeyan;Julia M. Dolence;C. Dale Poulter;Tsezi Egorov;Alexander Musolyamov;Yves Popineau;Jens Andersen;Peter Roepstorff;Roberto J. Falkenstein;Mirtha J. Biscoglio de Jiménez Bonino;Clara Peña;D. L. Gauggel;T. N. Asquith;R. J. Isfort;N. S. Miller;D. B. Cody;Michael F. Giblin;Tuck C. Wong;Thomas P. Quinn;Gregory A. Grant;Mark W. Crankshaw;Scott Griffith;Steve Schroeder;Thomas Quinn;F. Guinet;Y. Petillot;J. M. Chapsal;J. Dubayle;F. Greco;O. Barge;E. Forest;C. Valentin;Frederick M Hahn;Jonathan A. Baker;C. Dale Poulter;Mitsuru Haniu;William C. Kenney;Michael F. Rohde;James G. Harman;Eun Ju Lee;Joel Glasgow;Sew Fen Lew;Ali O. Belduz;Reed J. Harris;Michael S. Molony;Lene H. Keyt;Shiaw -Lin Wu;David H. Hawke;Jaqueline Tso;Sherrell Early;Chad G. Miller;G. Thomas Hayman;Jan A. Miernyk;Ulf Hellman;Christer Wernstedt;Jorge Góñez;Daniel Hess;Ralph Studer;Peter E. Hunziker;Hisashi Hirano;Yoshihiro Watanabe;Sergei F. Barbashov;Setsuko Komatsu;Andrew M. Hemmings;Masaru Miyagi;Susumu Tsunasawa;Reuben E. Huber;Nathan J. Roth;Michael T. Gaunt;Paul Jenö;Thierry Mini;Suzette Moes;Martin Horst;Kenji Jinnai;Tetsuo Ashizawa;M. Zouhair Atassi;Anders H. Johnsen;Hanne Jensen;Jens F. Rehfeld;Masaharu Kamo;Takao Kawakami;Norifumi Miyatake;Akira Tsugita;JN Keen;PF Zagalsky;JBC Findlay;Regine Kraft;Susanne Kostka;Enno Hartmann;Henry C. Krutzsch;John K. Inman;Claudia Machalinski;Mirtha Biscoglio de Jiménez Bonino;Donald K. McRorie;Gregg R. Dieckmann;Susan Heilman;William F. DeGrado;Vincent L. Pecoraro;James Kenny;Julie Sahakian;Jacqueline Tso;Mary B. Moyer;William A. Burkhart;Tatyana Muranova;Lubov Makova;Hugh Nicholas;John Hempel;Amy Hinich;David Deerfield;Joseph Behrmann;Alex Ropelewski;Lori Nixon;Leonard Maneri;Kerry Nugent;Ken Stoney;John Wieser;Hiroshi Ohguro;Krzysztof Palczewski;Kenneth A. Walsh;Richard S. Johnson;Leonard C Packman;Carl Webster;John Gray;G. Padrón;V. Morera;L. J. González;Y. Támbara;V. Besada;R. Villalonga;G. Chinea;O. Reyes;H. Garay R. Bringas;C. Nazábal;Bruce P. Parkinson;Kent A. Yamada;Anne Randolph;Anthony Pisano;Nicole H. Packer;John W. Redmond;Keith L. Williams;Andrew A. Gooley;Hanne H. Rasmussen;Ejvind Mørtz;Matthias Mann;Julio E. Celis;Lone K. Rasmussen;Esben S. Sørensen;Torben E. Petersen;Jørgen Gliemann;Poul Henning Jensen;Staffan Renlund;Henrik Wadensten;Annika Persson;Per Persson;Agneta Johansson;Per -Olof Edlund;Donald J. Rose;Ragna Sack;Alex Apffel;Chad Miller;Rodney L. Levine;Kazuyasu Sakaguchi;Nicola Zambrano;Marc S. Lewis;Eric T. Baldwin;Bruce A. Shapiro;John W Erickson;James G. Omichinski;G. Marius Clore;Angela M. Gronenborn;Ettore Appella;Werner Schröder;Irmgard Moser;Werner Pansegrau;Erich Lanka;Richard J. Simpson;James Eddes;Hong Ji;Gavin E. Reid;Robert L. Moritz;Peter Højrup;David W. Speicher;David F. Reim;Kaye D. Speicher;B. R. Srinivasa;S. P. Barde;William G. Stirtan;Alyona Sukhanova;Sergey Vorob'ev;Alexander Gabibov;Igor Bronstein;Kenji Tanaka;Kuniko Einaga;Minoru Tsukada;Jonathan F. Tait;Kazuo Fujikawa;Keiji Takamoto;Kazuo Satake;Ilya A. Vakser;V. V. Velikodvorskaia;A. G. Gabibov;A. G. Rabinkov;Tennie Videler;Michael Osborne;Geoffrey Moore;Richard James;Colin Kleanthous;Jane H. Walent;Richard Bessen;Dick Marsh;G. Marius Clore;Ronald L. Niece;Francis H. C. Tsao;Hong Wang;Scot R. Weinberger;Lynn M. Chakel;Ewald M. Wondrak;Alan R. Kimmel;John M. Louis - 通讯作者:
John M. Louis
Letter to the Editor: Assignment of 1H,13C and 15N signals of the DNase domain of colicin E9
- DOI:
10.1023/a:1008394407597 - 发表时间:
1999-06-01 - 期刊:
- 影响因子:1.900
- 作者:
Sara B.-M. Whittaker;Ruth Boetzel;Colin MacDonald;Lu-Yun Lian;Richard James;Colin Kleanthous;Geoffrey R. Moore - 通讯作者:
Geoffrey R. Moore
How Nanoscale Protein Interactions Determine the Mesoscale Dynamic Organisation of Membrane Proteins
- DOI:
10.1016/j.bpj.2018.11.1984 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Anna L. Duncan;Maximilian A.R. Bandurka;Matthieu G. Chavent;Patrice Rassam;Wanling Song;Oliver Birkholz;Jean Helie;Tyler Reddy;Dmitry Beliaev;Ben Hambly;Jacob Piehler;Colin Kleanthous;Mark S.P. Sansom - 通讯作者:
Mark S.P. Sansom
Colin Kleanthous的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Kleanthous', 18)}}的其他基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Molecular basis of outer membrane stabilisation by the energised Tol-Pal system in Gram-negative bacteria
革兰氏阴性菌通电 Tol-Pal 系统外膜稳定的分子基础
- 批准号:
BB/V008056/1 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Protein import through the E. coli cell envelope
通过大肠杆菌细胞膜输入蛋白质
- 批准号:
BB/P009948/1 - 财政年份:2017
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Molecular basis of protein translocation through outer membrane porins
蛋白质通过外膜孔蛋白易位的分子基础
- 批准号:
BB/L021234/1 - 财政年份:2015
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Molecular mechanism of environmental stress sensing by bacterial Zinc-containing Anti-Sigma factors
细菌含锌Anti-Sigma因子感知环境应激的分子机制
- 批准号:
BB/I008691/2 - 财政年份:2012
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Investigating E. coli cell envelope proteins and processes through colicin intoxication
通过大肠菌素中毒研究大肠杆菌细胞包膜蛋白和过程
- 批准号:
BB/G020671/2 - 财政年份:2012
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Investigating E. coli cell envelope proteins and processes through colicin intoxication
通过大肠菌素中毒研究大肠杆菌细胞包膜蛋白和过程
- 批准号:
BB/G020671/1 - 财政年份:2009
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Biophysical and structural analysis of protein-protein interactions: from encounter complexes to computational design and directed evolution
蛋白质-蛋白质相互作用的生物物理和结构分析:从相遇复合物到计算设计和定向进化
- 批准号:
BB/E011306/1 - 财政年份:2007
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
- 批准号:82371799
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Elucidation of molecular mechanism of environmental response during the initiation of delignification in white-rot fungi
阐明白腐真菌脱木质素启动过程中环境响应的分子机制
- 批准号:
23K19309 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Circadian rhythm and molecular mechanism of gastrointestinal mucosal barrier function focusing on day-night environmental factors.
关注昼夜环境因素的昼夜节律及胃肠黏膜屏障功能的分子机制。
- 批准号:
23K15044 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the molecular and neural basis that controls the environmental factor-dependent forgetting mechanism
阐明控制环境因素依赖性遗忘机制的分子和神经基础
- 批准号:
22H02715 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of exposure to environmental chemicals on adolescent reproductive function, depression, and NCDs in the Hokkaido Study: Clarification of molecular mechanism
北海道研究中暴露于环境化学物质对青少年生殖功能、抑郁和非传染性疾病的影响:阐明分子机制
- 批准号:
22H00489 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular mechanism of extreme environmental resistance revealed from structural properties of proteins embedded in sugar glass
糖玻璃中蛋白质的结构特性揭示了耐极端环境的分子机制
- 批准号:
20K03878 - 财政年份:2020
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
De-cloaking the cell wall: investigating the molecular mechanism(s) of cell wall remodelling during adaptation to environmental pH in Candida albicans
揭开细胞壁的外衣:研究白色念珠菌适应环境 pH 过程中细胞壁重塑的分子机制
- 批准号:
BB/R00966X/2 - 财政年份:2020
- 资助金额:
$ 53.78万 - 项目类别:
Research Grant
Molecular mechanism of interactions between phyllosphere C1-microbes and plants and its application in environmental conservation agriculture
叶圈C1-微生物与植物相互作用的分子机制及其在环保农业中的应用
- 批准号:
19K22307 - 财政年份:2019
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)