Exploiting protein import to interrogate energy transduction through the bacterial cell envelope

利用蛋白质输入来询问通过细菌细胞包膜的能量转导

基本信息

  • 批准号:
    BB/X016366/1
  • 负责人:
  • 金额:
    $ 83.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Bacteria are both friend and foe. It is estimated that our bodies contain more bacterial cells (the microbiome) than human cells. Bacteria are therefore vital to healthy living; for example, gut bacteria are essential to the digestion of food. However, many bacteria are causative agents of disease. Even those we host in our bodies can become opportunistic pathogens when exposed to different niches, as happens during surgery. The rise of antibiotic resistance amongst bacterial species has made this occurrence all the more frequent, raising the prospect that in the next 20-30 years routine hospital procedures and even giving birth will become hazardous because of the lack of effective antibiotics. The present application focuses on a group of protein molecules known as bacteriocins. These are naturally-occurring antimicrobials that bacteria produce during the warfare they wage with their neighbours to gain greater access to resources. Bacteriocins have the potential to be reconfigured to kill pathogenic bacteria but much still needs to be understood as to their mode of action. The bacteriocins investigated in this proposal target Gram-negative bacteria, in other words bacteria that have two membranes. The outer membrane is a unique asymmetric lipid bilayer that excludes many classes of antibiotics that are active against Gram-positive bacteria, which lack this additional membrane. Hence, the outer membrane is one of the reasons why Gram-negative bacteria are some of the most problematic in terms of antibiotic resistance. In recent years, we have learnt much about the underlying mechanisms of action of bacteriocins that kill Gram-negative bacteria, especially those that target E. coli, P. aeruginosa and K. pneumoniae. This recent work, much of it from Oxford and unpublished, has identified several critical pieces of information. First, bacteriocins often use a structural motif known as a beta-hairpin to dock onto the surface of the bacterium prior to transport. Second, bacteriocins have the potential to import significantly greater mass (1000x) than is normally permitted by the permeability filters of the outer membrane. These filters are proteins known as porins. Third, this property of bacteriocins is linked to their ability to tap into the energy of the cell, which is associated with the inner membrane of the bacterium. By tapping into this energy source, known as the proton motive force, bacteriocins catalyse their transport across the outer membrane, even carrying cargo molecules such as DNA and organic molecules.We will exploit these discoveries to understand the structural basis for bacteriocin beta-hairpin association with their porin receptors. We will also use the bacteriocins we've engineered to be much larger than normal to be able to attach them to polystyrene beads so that we can visualise the import of single bacteriocins in real time. By doing so, we can begin to interrogate the energetics of import, in other words the molecular mechanisms by which bacteriocins harness the proton motive force across the inner membrane to transport themselves across the outer membrane. Developing these new import assays will also tell us about the energy transduction systems themselves which are still shrouded in mystery. Finally, by achieving these goals we'll be laying the foundations for understanding the constraints the outer membrane places on bacteriocin entry so that we can engineer these future antimicrobials appropriately.
细菌既是朋友又是敌人。据估计,我们的身体含有比人体细胞更多的细菌细胞(微生物组)。因此,细菌对健康生活至关重要;例如,肠道细菌对食物的消化至关重要。然而,许多细菌是疾病的病原体。即使是那些我们体内的宿主,当暴露在不同的环境中时,也会成为机会性病原体,就像手术期间发生的那样。细菌种类中抗生素耐药性的增加使这种情况更加频繁,提高了前景,即在未来20 - 30年内,由于缺乏有效的抗生素,常规的医院程序甚至分娩都将变得危险。本申请集中于一组称为细菌素的蛋白质分子。这些是细菌在与邻居进行战争以获得更多资源时产生的天然抗菌剂。细菌素有可能被重新配置以杀死病原菌,但仍需要了解它们的作用模式。本提案中研究的细菌素靶向革兰氏阴性细菌,换句话说,具有两层膜的细菌。外膜是一种独特的不对称脂质双层,它排除了许多类对革兰氏阳性菌有活性的抗生素,而革兰氏阳性菌缺乏这种额外的膜。因此,外膜是革兰氏阴性菌在抗生素耐药性方面最成问题的原因之一。近年来,我们对细菌素杀灭革兰氏阴性菌,特别是大肠杆菌的作用机制有了更多的了解。coli、铜绿假单胞菌和克雷伯氏菌。肺炎。这一最新的工作,其中大部分来自牛津大学和未发表,已经确定了几个关键的信息。首先,细菌素通常使用称为β-发夹的结构基序在运输之前停靠在细菌表面。其次,细菌素有可能输入比外膜的渗透性过滤器通常允许的质量大得多的质量(1000倍)。这些过滤器是被称为孔蛋白的蛋白质。第三,细菌素的这种特性与它们利用细胞能量的能力有关,细胞能量与细菌的内膜有关。通过利用这种被称为质子动力的能量来源,细菌素催化它们穿过外膜的运输,甚至携带货物分子,如DNA和有机分子。我们将利用这些发现来理解细菌素β-发夹与其孔蛋白受体结合的结构基础。我们还将使用我们设计的比正常大得多的细菌素,以便能够将它们附着在聚苯乙烯珠上,这样我们就可以在真实的时间内可视化单个细菌素的输入。通过这样做,我们可以开始询问输入的能量学,换句话说,细菌素利用质子动力穿过内膜将自己运送穿过外膜的分子机制。开发这些新的进口分析也将告诉我们仍然笼罩在神秘之中的能量转导系统本身。最后,通过实现这些目标,我们将为理解外膜对细菌素进入的限制奠定基础,以便我们能够适当地设计这些未来的抗菌剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Kleanthous其他文献

Nanoscale Protein Interactions Determine the Mesoscale Dynamic Organisation of Biomembranes
  • DOI:
    10.1016/j.bpj.2017.11.2163
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anna L. Duncan;Matthieu Chavent;Patrice Rassam;Jean Hélie;Tyler Reddy;Oliver Birkholz;Dmitry Belyaev;Ben Hambly;Jacob Piehler;Colin Kleanthous;Mark S.P. Sansom
  • 通讯作者:
    Mark S.P. Sansom
Force Triggered Dissociation of the Highly Avid E9:Im9 Complex
  • DOI:
    10.1016/j.bpj.2012.11.3174
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    David Brockwell;Oliver Farrance;Renata Kaminska;Sasha Derrington;Colin Kleanthous;Sheena Radford
  • 通讯作者:
    Sheena Radford
MPSA abstracts
  • DOI:
    10.1007/bf01898856
  • 发表时间:
    1994-07-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Mahmoud Aminlari;Thomas Asquith;Katherine Sarlo;Jerome M. Bailey;Oanh Tu;Gilbert Issai;Alice Ha;John E. Shively;Alexander W. Bell;Nicole C. Baur;John J. M. Bergeron;Wei -Jia Ou;David Y. Thomas;Katherine Cianflone;Allain Baldo;Maxwell T. Hincke;Richard L. Momparler;Josée Laliberté;David M. P. Thomson;M. Sutherland;Vladimir Besada;Javier Gonzalez;Gabriel Padron;Hilda Garay;Osvaldo Reyes;Toshifumi Takao;Yasutsugu Shimonishi;Rainer Bischoff;Dominique Roecklin;Bernadette Bouchon;Klaus Klarskov;Alain Van Dorsselaer;Patricia G. Brake;Anne Pacitti;Terry Higgins;Panos Stevis;John Malinowski;Sue McElhiney;Janes Huang;Christine Vestal;Scott D. Buckel;Tracy Stevenson;Joseph A. Loo;Martin Caffrey;Jin Wang;Carmichael J. A. Wallace;Ian Clark-Lewis;C. A. Carothers Carraway;J. Huang;Y. Li;S. -H. Juang;A. Gallo;B. J. Mayer;K. L. Carraway;Patrick L. Coleman;Daniel Sarpong;David W. Deerfield;Amanda Holland-Minkley;John D. Hempel;Hugh B. Nicholas;Nancy D. Denslow;Leroy C. Folmar;Craig V. Sullivan;James D. Dixon;Jonathan P. Mark;Christopher P. Elicone;Simin D. Maleknia;Brian F. McGuinness;Fred E. Regnier;Noubar B. Afeyan;Julia M. Dolence;C. Dale Poulter;Tsezi Egorov;Alexander Musolyamov;Yves Popineau;Jens Andersen;Peter Roepstorff;Roberto J. Falkenstein;Mirtha J. Biscoglio de Jiménez Bonino;Clara Peña;D. L. Gauggel;T. N. Asquith;R. J. Isfort;N. S. Miller;D. B. Cody;Michael F. Giblin;Tuck C. Wong;Thomas P. Quinn;Gregory A. Grant;Mark W. Crankshaw;Scott Griffith;Steve Schroeder;Thomas Quinn;F. Guinet;Y. Petillot;J. M. Chapsal;J. Dubayle;F. Greco;O. Barge;E. Forest;C. Valentin;Frederick M Hahn;Jonathan A. Baker;C. Dale Poulter;Mitsuru Haniu;William C. Kenney;Michael F. Rohde;James G. Harman;Eun Ju Lee;Joel Glasgow;Sew Fen Lew;Ali O. Belduz;Reed J. Harris;Michael S. Molony;Lene H. Keyt;Shiaw -Lin Wu;David H. Hawke;Jaqueline Tso;Sherrell Early;Chad G. Miller;G. Thomas Hayman;Jan A. Miernyk;Ulf Hellman;Christer Wernstedt;Jorge Góñez;Daniel Hess;Ralph Studer;Peter E. Hunziker;Hisashi Hirano;Yoshihiro Watanabe;Sergei F. Barbashov;Setsuko Komatsu;Andrew M. Hemmings;Masaru Miyagi;Susumu Tsunasawa;Reuben E. Huber;Nathan J. Roth;Michael T. Gaunt;Paul Jenö;Thierry Mini;Suzette Moes;Martin Horst;Kenji Jinnai;Tetsuo Ashizawa;M. Zouhair Atassi;Anders H. Johnsen;Hanne Jensen;Jens F. Rehfeld;Masaharu Kamo;Takao Kawakami;Norifumi Miyatake;Akira Tsugita;JN Keen;PF Zagalsky;JBC Findlay;Regine Kraft;Susanne Kostka;Enno Hartmann;Henry C. Krutzsch;John K. Inman;Claudia Machalinski;Mirtha Biscoglio de Jiménez Bonino;Donald K. McRorie;Gregg R. Dieckmann;Susan Heilman;William F. DeGrado;Vincent L. Pecoraro;James Kenny;Julie Sahakian;Jacqueline Tso;Mary B. Moyer;William A. Burkhart;Tatyana Muranova;Lubov Makova;Hugh Nicholas;John Hempel;Amy Hinich;David Deerfield;Joseph Behrmann;Alex Ropelewski;Lori Nixon;Leonard Maneri;Kerry Nugent;Ken Stoney;John Wieser;Hiroshi Ohguro;Krzysztof Palczewski;Kenneth A. Walsh;Richard S. Johnson;Leonard C Packman;Carl Webster;John Gray;G. Padrón;V. Morera;L. J. González;Y. Támbara;V. Besada;R. Villalonga;G. Chinea;O. Reyes;H. Garay R. Bringas;C. Nazábal;Bruce P. Parkinson;Kent A. Yamada;Anne Randolph;Anthony Pisano;Nicole H. Packer;John W. Redmond;Keith L. Williams;Andrew A. Gooley;Hanne H. Rasmussen;Ejvind Mørtz;Matthias Mann;Julio E. Celis;Lone K. Rasmussen;Esben S. Sørensen;Torben E. Petersen;Jørgen Gliemann;Poul Henning Jensen;Staffan Renlund;Henrik Wadensten;Annika Persson;Per Persson;Agneta Johansson;Per -Olof Edlund;Donald J. Rose;Ragna Sack;Alex Apffel;Chad Miller;Rodney L. Levine;Kazuyasu Sakaguchi;Nicola Zambrano;Marc S. Lewis;Eric T. Baldwin;Bruce A. Shapiro;John W Erickson;James G. Omichinski;G. Marius Clore;Angela M. Gronenborn;Ettore Appella;Werner Schröder;Irmgard Moser;Werner Pansegrau;Erich Lanka;Richard J. Simpson;James Eddes;Hong Ji;Gavin E. Reid;Robert L. Moritz;Peter Højrup;David W. Speicher;David F. Reim;Kaye D. Speicher;B. R. Srinivasa;S. P. Barde;William G. Stirtan;Alyona Sukhanova;Sergey Vorob'ev;Alexander Gabibov;Igor Bronstein;Kenji Tanaka;Kuniko Einaga;Minoru Tsukada;Jonathan F. Tait;Kazuo Fujikawa;Keiji Takamoto;Kazuo Satake;Ilya A. Vakser;V. V. Velikodvorskaia;A. G. Gabibov;A. G. Rabinkov;Tennie Videler;Michael Osborne;Geoffrey Moore;Richard James;Colin Kleanthous;Jane H. Walent;Richard Bessen;Dick Marsh;G. Marius Clore;Ronald L. Niece;Francis H. C. Tsao;Hong Wang;Scot R. Weinberger;Lynn M. Chakel;Ewald M. Wondrak;Alan R. Kimmel;John M. Louis
  • 通讯作者:
    John M. Louis
How Nanoscale Protein Interactions Determine the Mesoscale Dynamic Organisation of Membrane Proteins
  • DOI:
    10.1016/j.bpj.2018.11.1984
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Anna L. Duncan;Maximilian A.R. Bandurka;Matthieu G. Chavent;Patrice Rassam;Wanling Song;Oliver Birkholz;Jean Helie;Tyler Reddy;Dmitry Beliaev;Ben Hambly;Jacob Piehler;Colin Kleanthous;Mark S.P. Sansom
  • 通讯作者:
    Mark S.P. Sansom
Letter to the Editor: Assignment of 1H,13C and 15N signals of the DNase domain of colicin E9
  • DOI:
    10.1023/a:1008394407597
  • 发表时间:
    1999-06-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Sara B.-M. Whittaker;Ruth Boetzel;Colin MacDonald;Lu-Yun Lian;Richard James;Colin Kleanthous;Geoffrey R. Moore
  • 通讯作者:
    Geoffrey R. Moore

Colin Kleanthous的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Kleanthous', 18)}}的其他基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Molecular basis of outer membrane stabilisation by the energised Tol-Pal system in Gram-negative bacteria
革兰氏阴性菌通电 Tol-Pal 系统外膜稳定的分子基础
  • 批准号:
    BB/V008056/1
  • 财政年份:
    2021
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Protein import through the E. coli cell envelope
通过大肠杆菌细胞膜输入蛋白质
  • 批准号:
    BB/P009948/1
  • 财政年份:
    2017
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Molecular basis of protein translocation through outer membrane porins
蛋白质通过外膜孔蛋白易位的分子基础
  • 批准号:
    BB/L021234/1
  • 财政年份:
    2015
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Molecular mechanism of environmental stress sensing by bacterial Zinc-containing Anti-Sigma factors
细菌含锌Anti-Sigma因子感知环境应激的分子机制
  • 批准号:
    BB/I008691/2
  • 财政年份:
    2012
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Investigating E. coli cell envelope proteins and processes through colicin intoxication
通过大肠菌素中毒研究大肠杆菌细胞包膜蛋白和过程
  • 批准号:
    BB/G020671/2
  • 财政年份:
    2012
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Molecular mechanism of environmental stress sensing by bacterial Zinc-containing Anti-Sigma factors
细菌含锌Anti-Sigma因子感知环境应激的分子机制
  • 批准号:
    BB/I008691/1
  • 财政年份:
    2011
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Investigating E. coli cell envelope proteins and processes through colicin intoxication
通过大肠菌素中毒研究大肠杆菌细胞包膜蛋白和过程
  • 批准号:
    BB/G020671/1
  • 财政年份:
    2009
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant
Biophysical and structural analysis of protein-protein interactions: from encounter complexes to computational design and directed evolution
蛋白质-蛋白质相互作用的生物物理和结构分析:从相遇复合物到计算设计和定向进化
  • 批准号:
    BB/E011306/1
  • 财政年份:
    2007
  • 资助金额:
    $ 83.45万
  • 项目类别:
    Research Grant

相似国自然基金

有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
  • 批准号:
    32372636
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
  • 批准号:
    82371054
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
  • 批准号:
    82370976
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
  • 批准号:
    82370865
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
  • 批准号:
    82370954
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
  • 批准号:
    82371738
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
  • 批准号:
    10735778
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
Delineating phosphorylation-mediated regulation of mitochondrial function
描绘磷酸化介导的线粒体功能调节
  • 批准号:
    10713378
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
LRRK2 and oxidative stress in Parkinson’s disease
LRRK2 与帕金森病的氧化应激
  • 批准号:
    10799999
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
Mechanisms of mitochondrial-ER communication during dietary and thermal induced stress
饮食和热应激期间线粒体-内质网通讯的机制
  • 批准号:
    10663603
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
NUP50 as a modifier and risk factor for TDP-43 pathology in FTD/ALS
NUP50 作为 FTD/ALS 中 TDP-43 病理的修饰剂和危险因素
  • 批准号:
    10800366
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
  • 批准号:
    10722759
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
Role of StAR-related lipid transfer protein 10 in alcohol-induced breast cancer progression
StAR相关脂质转移蛋白10在酒精诱导的乳腺癌进展中的作用
  • 批准号:
    10734533
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
Unraveling the Mechanisms of Neurodegeneration in TBCK Encephaloneuronopathy
揭示 TBCK 脑神经病神经变性的机制
  • 批准号:
    10700602
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
Endoplasmic reticulum-assisted mitochondrial precursor biogenesis and quality control
内质网辅助线粒体前体生物发生和质量控制
  • 批准号:
    10748025
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
DNA repair dysfunction in cancer induced by altered BRCA2 localization
BRCA2 定位改变引起的癌症 DNA 修复功能障碍
  • 批准号:
    10739521
  • 财政年份:
    2023
  • 资助金额:
    $ 83.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了