Analysis of the mechanism for coupled translation in cellular and virus mRNAs
细胞和病毒 mRNA 耦合翻译机制分析
基本信息
- 批准号:BB/I022880/1
- 负责人:
- 金额:$ 58.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Translation is the final stage of the most fundamental process in biology in which the genetic material of the organism is turned into proteins. During the process of translation; ribosomes (which are the cellular machines that build proteins) make the new protein by following a plan written in a molecule called mRNA. mRNA is a single stranded molecule made up from 4 different components (called nucleotides) which act like letters in our alphabet to make a code. Scientists have been studying the way the ribosome machine works in eukaryotes (higher organisms) for many years and thought that all proteins are made in the same way. Viruses are a group of microscopic organisms which infect and cause diseases in organisms. During the infection process they must use the infected cell's apparatus including ribosomes to make more new viruses. Viruses have been forced to exploit all of the cell systems to survive and multiply faster before the infected cell can destroy it. Importantly, all strategies used by the virus must be compatible with the workings of the cell to function. Interestingly, by studying these new strategies Scientists have seen that not only, do the viruses use them, but the cells also do. We are studying a virus called respiratory syncytial virus (RSV) which will have likely infected most individuals a child and will have a good chance of infected them again as adults. The RSV virus also uses a novel mechanism to express a protein called M2-2. Here instead of just making one protein from a piece of mRNA two proteins are made. We are interested in working out how this is possible. We have shown that in order to make the second protein: M2-2 the first protein M2-1 must be made. This means the ribosomes must go in reverse as the coding sequence for the second protein overlaps with the coding sequence of the first. This was an important finding as ribosomes had not previously been shown to have this ability. Important regions within this mRNA have been discovered that allow the second protein to be made. These regions appear to be present throughout the coding sequence of M2-1. If we change these regions by introducing mutations or make deletions the amounts of the second protein made are reduced, in some cases completely, indicating their importance. These sections contain a lot of secondary structure. Secondary structure occurs where the nucleotides in different parts of the mRNA molecule can interact together, which can be thought of as like fitting two pieces of a jig-saw together. As more pieces are added the structure gets stronger. We are going to use the latest techniques to capture and pinpoint where the ribosome is on the M2-1 RNA. If the ribosome is in one location more than by random chance this will indicate the location where the ribosome has paused. This could 1) allow the ribosome to effectively think and change its mind. So instead of doing what it should and following a signal to stop and move away it re-starts and makes a new protein and or 2) The secondary structures inhibit ribosome movements so that gaps appear on the mRNA molecule so a ribosome stopping can also move back and not be blocked. We are also interested in finding out if other proteins assist in this process. We aim to fish out these proteins using our M2-1 RNA as bait. We have also discovered for the first time that our genome contains examples of mRNA that carry out this process. We have at least 5 examples to investigate further and highlights the universal use of this mechanism.
翻译是生物学中最基本的过程的最后阶段,在这个过程中,生物体的遗传物质转化为蛋白质。在翻译过程中,核糖体(构建蛋白质的细胞机器)通过遵循一种称为mRNA的分子中编写的计划来制造新蛋白质。mRNA是一种单链分子,由4种不同的成分(称为核苷酸)组成,它们就像我们字母表中的字母一样构成代码。科学家们多年来一直在研究真核生物(高等生物)中核糖体机器的工作方式,并认为所有蛋白质都是以同样的方式产生的。病毒是一组微生物,它们感染并引起生物体的疾病。在感染过程中,它们必须利用被感染细胞的器官(包括核糖体)来制造更多的新病毒。病毒不得不利用所有的细胞系统在被感染的细胞摧毁之前生存和繁殖得更快。重要的是,病毒使用的所有策略必须与细胞的运作兼容。有趣的是,通过研究这些新策略,科学家们发现,不仅病毒使用它们,而且细胞也使用它们。我们正在研究一种叫做呼吸道合胞病毒(RSV)的病毒,这种病毒很可能在儿童时期感染大多数人,并且在成年后很有可能再次感染。RSV病毒还使用一种新的机制来表达一种名为M2-2的蛋白质。在这里,不是从一段mRNA中合成一种蛋白质,而是合成两种蛋白质。我们有兴趣弄清楚这是如何可能的。我们已经证明,为了制造第二种蛋白质:M2-2,必须制造第一种蛋白质M2-1。这意味着核糖体必须反向运动,因为第二种蛋白质的编码序列与第一种蛋白质的编码序列重叠。这是一个重要的发现,因为核糖体以前没有被证明具有这种能力。在这个mRNA中的重要区域已经被发现,允许第二个蛋白质被制造。这些区域似乎存在于M2-1的整个编码序列中。如果我们通过引入突变或进行缺失来改变这些区域,则所产生的第二种蛋白质的量减少,在某些情况下完全减少,这表明它们的重要性。这些部分含有大量的二级结构。二级结构发生在mRNA分子不同部分的核苷酸可以相互作用的地方,这可以被认为是将两块拼图拼在一起。随着更多的部件被添加,结构变得更坚固。我们将使用最新的技术来捕捉和精确定位核糖体在M2-1 RNA上的位置。如果核糖体在一个位置上多于随机的机会,这将指示核糖体已经暂停的位置。这可以1)允许核糖体有效地思考和改变它的想法。因此,它没有做它应该做的事情,而是按照一个信号停止并离开,它重新开始并制造一个新的蛋白质,或者2)二级结构抑制核糖体运动,这样mRNA分子上就会出现缺口,这样核糖体停止也可以向后移动,而不会被阻止。我们也有兴趣了解其他蛋白质是否有助于这一过程。我们的目标是用我们的M2-1 RNA作为诱饵钓出这些蛋白质。我们还首次发现,我们的基因组中含有执行这一过程的mRNA。我们至少有5个例子来进一步研究,并强调了这种机制的普遍使用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism.
- DOI:10.1261/rna.041574.113
- 发表时间:2014-03
- 期刊:
- 影响因子:0
- 作者:Gould PS;Dyer NP;Croft W;Ott S;Easton AJ
- 通讯作者:Easton AJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Easton其他文献
Bivariate copula monitoring
双变量联结监测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Andrew Easton;Okki van Dalen;R. Goeb;A. D. Bucchianico - 通讯作者:
A. D. Bucchianico
Andrew Easton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Easton', 18)}}的其他基金
FLIP - Commercial development of antivirals for bovine respiratory syncytial virus
FLIP - 牛呼吸道合胞病毒抗病毒药物的商业开发
- 批准号:
BB/M006263/1 - 财政年份:2014
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
Novel Inhibitors of Bovine Respiratory Syncytial Virus
牛呼吸道合胞病毒的新型抑制剂
- 批准号:
BB/M005534/1 - 财政年份:2014
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
Small molecule inhibitors for bovine respiratory syncytial virus
牛呼吸道合胞病毒小分子抑制剂
- 批准号:
BB/L024438/1 - 财政年份:2014
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
Coupled translation: a novel process for translation of two overlapping open reading frames in mRNA
耦合翻译:mRNA 中两个重叠开放阅读框翻译的新过程
- 批准号:
BB/F007612/1 - 财政年份:2008
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
Properties and in vivo mechanism(s) of action of cloned influenza virus interfering RNA - a new type of antiviral agent
新型抗病毒药物——克隆流感病毒干扰RNA的特性和体内作用机制
- 批准号:
G0600832/1 - 财政年份:2007
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
The application of reverse genetics to the study of pathogenicity in avian pneumovirus
反向遗传学在禽肺病毒致病性研究中的应用
- 批准号:
BB/D012171/1 - 财政年份:2006
- 资助金额:
$ 58.05万 - 项目类别:
Research Grant
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
- 批准号:82371799
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Classification of corrosion mechanism of steel bar in concrete based on electro-chemical and optical measurements and validation by coupled physical-chemical analysis
基于电化学和光学测量的混凝土钢筋腐蚀机理分类以及物理化学耦合分析验证
- 批准号:
23H01482 - 财政年份:2023
- 资助金额:
$ 58.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational Analysis of Enzyme Catalysis and Regulation
酶催化与调控的计算分析
- 批准号:
10206585 - 财政年份:2021
- 资助金额:
$ 58.05万 - 项目类别:
Computational Analysis of Enzyme Catalysis and Regulation
酶催化与调控的计算分析
- 批准号:
10581596 - 财政年份:2021
- 资助金额:
$ 58.05万 - 项目类别:
Computational Analysis of Enzyme Catalysis and Regulation
酶催化与调控的计算分析
- 批准号:
10376792 - 财政年份:2021
- 资助金额:
$ 58.05万 - 项目类别:
Isolation of GPR160 for biochemical analysis of the activation mechanism and development of a high throughput screening assay to identify small molecule inhibitors
分离 GPR160,用于激活机制的生化分析,并开发高通量筛选方法来鉴定小分子抑制剂
- 批准号:
10176852 - 财政年份:2020
- 资助金额:
$ 58.05万 - 项目类别:
Study on Quenching Mechanism of Circuit Breaker Arc Discharge by Coupled Numerical Analysis of Radiation Heat Transfer and Magnetohydrodynamics
辐射传热与磁流体力学耦合数值分析研究断路器电弧放电灭弧机理
- 批准号:
20K14722 - 财政年份:2020
- 资助金额:
$ 58.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of the mechanism that determines cilia localization of G protein-coupled receptors
G蛋白偶联受体纤毛定位决定机制分析
- 批准号:
19K06636 - 财政年份:2019
- 资助金额:
$ 58.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analysis of novel microbial membrane export proteins
新型微生物膜输出蛋白的结构和功能分析
- 批准号:
9751335 - 财政年份:2018
- 资助金额:
$ 58.05万 - 项目类别:
Structural and functional analysis of novel microbial membrane export proteins
新型微生物膜输出蛋白的结构和功能分析
- 批准号:
10442092 - 财政年份:2018
- 资助金额:
$ 58.05万 - 项目类别:
Structural and functional analysis of novel microbial membrane export proteins
新型微生物膜输出蛋白的结构和功能分析
- 批准号:
10453714 - 财政年份:2018
- 资助金额:
$ 58.05万 - 项目类别:














{{item.name}}会员




