CAPP: Combining Algal and Plant Photosynthesis

CAPP:结合藻类和植物光合作用

基本信息

  • 批准号:
    BB/I024429/1
  • 负责人:
  • 金额:
    $ 20.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

In most plants, growth rate is limited by the rate at which carbon dioxide from the atmosphere is taken up and converted to sugars in the process of photosynthesis. The enzyme responsible for the first step in this process, Rubisco, does not work at its potential maximum efficiency at the current levels of carbon dioxide present in the atmosphere. If levels were much higher, photosynthesis would be faster and plants would grow faster. This speeding-up of photosynthesis will happen naturally over the next fifty years or so as atmospheric carbon dioxide levels rise due to human activities. However, there is an immediate requirement for increased crop productivity to provide food for the rising population of the planet. Our project addresses this problem. We are studying a mechanism present in tiny green algae that results in high concentrations of carbon dioxide inside their photosynthesising cells (called a Carbon Concentrating Mechanism, or CCM), enabling Rubisco to work at maximum efficiency. We have recently discovered important new information about this mechanism, and we have invented new and rapid methods to discover algal genes that contribute to it. We have two complementary and parallel aims. First, we will apply our new methods to identify all of the genes required by the algae to achieve high concentrations of carbon dioxide inside the cells, and we will discover exactly how these genes work. Second, we will transfer the most important genes into a plant, and study whether the same CCM can be recreated inside a leaf. If it can, we expect that our experimental plant will have higher rates of photosynthesis and hence a higher rate of growth than normal plants. This work will provide new insights into how plants and algae acquire and use carbon dioxide from the atmosphere, of great importance in predicting and coping with the current rapid changes in the atmosphere and hence in climate. The work will also contribute to strategies to increase global food security, because it will indicate new ways in which crop productivity can be increased.
在大多数植物中,生长速度受到大气中的二氧化碳在光合作用过程中被吸收并转化为糖的速度的限制。负责这一过程的第一步的酶Rubisco在目前大气中二氧化碳的水平下无法发挥其潜在的最大效率。如果浓度高得多,光合作用会更快,植物会生长得更快。这种光合作用的加速将在未来50年左右的时间里自然发生,因为大气中的二氧化碳水平会因人类活动而上升。然而,迫切需要提高作物生产力,为地球上不断增长的人口提供粮食。我们的项目解决了这个问题。我们正在研究微小绿色藻类中存在的一种机制,该机制导致其光合作用细胞内的高浓度二氧化碳(称为碳浓缩机制,或CCM),使Rubisco以最高效率工作。我们最近发现了关于这一机制的重要新信息,我们发明了新的快速方法来发现促成这一机制的藻类基因。我们有两个互补和平行的目标。首先,我们将应用我们的新方法来识别藻类在细胞内实现高浓度二氧化碳所需的所有基因,我们将确切地发现这些基因如何工作。第二,我们将把最重要的基因转移到植物中,并研究是否可以在叶子中重建相同的CCM。如果可以,我们希望我们的实验植物将有更高的光合作用速率,因此比正常植物更高的生长速率。这项工作将为植物和藻类如何从大气中获取和利用二氧化碳提供新的见解,对于预测和应对当前大气和气候的快速变化具有重要意义。这项工作还将有助于加强全球粮食安全的战略,因为它将指出提高作物生产力的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Fell其他文献

Fractal Analysis of Peripapillary Vasculature In Eyes With Papilledema Using Optical Coherence Tomography Angiography
使用光学相干断层扫描血管造影对患有视乳头水肿的眼睛的视乳头周围血管进行分形分析
  • DOI:
    10.4172/2155-9570.1000786
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Soshian Sarrafpour;E. Tsui;David Fell;Sherief Raouf;Nicole K. Scripsema;Sarwar Zahid;Sarita B. Davé;P. Garcia;Toco Y P Chui;R. Rosen;R. Banik;Joshua A. Young
  • 通讯作者:
    Joshua A. Young
The prematurely born infant and anaesthesia
  • DOI:
    10.1093/bjaceaccp/mkp010
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kawshala Peiris;David Fell
  • 通讯作者:
    David Fell
Imaging of Retinal and Choroidal Metastases
视网膜和脉络膜转移瘤的影像学检查
Antibiotic Protocols for Endophthalmitis Prophylaxis Following Open-Globe Repair: A Survey of U.S. Residency Programs
开放式球体修复后预防眼内炎的抗生素方案:美国住院医师计划调查

David Fell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Fell', 18)}}的其他基金

India-UK Development of Metabolic Models to Support Systems Biology Approaches to Bioenergy Research
印度-英国开发代谢模型以支持生物能源研究的系统生物学方法
  • 批准号:
    BB/J019712/1
  • 财政年份:
    2012
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant
Fruit Integrative Modelling (FRIM)
水果综合建模(FRIM)
  • 批准号:
    BB/I004467/1
  • 财政年份:
    2010
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant
Predictive modelling of the rice (oryza sativa) metabolic network
水稻(oryza sativa)代谢网络的预测模型
  • 批准号:
    BB/G530317/1
  • 财政年份:
    2009
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant
Multi-level modelling of mitochondrial energy metabolism
线粒体能量代谢的多层次建模
  • 批准号:
    BB/F005431/1
  • 财政年份:
    2008
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant
A genome-scale model of Arabidopsis metabolism
拟南芥代谢的基因组规模模型
  • 批准号:
    BB/E00203X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant

相似海外基金

Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
  • 批准号:
    2345129
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Standard Grant
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
  • 批准号:
    MR/Y012895/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Research Grant
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
  • 批准号:
    MR/Y020235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Fellowship
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Standard Grant
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    $ 20.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了