RevGenUK the next generation: establishing a TILLING boutique for a UK-based reverse genetics community resource
RevGenUK 下一代:为英国反向遗传学社区资源建立 TILLING 精品店
基本信息
- 批准号:BB/I025891/1
- 负责人:
- 金额:$ 77.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In an ever changing climate, we are constantly trying to improve crops to achieve more sustainable agricultural practices. To do this, we need to understand in great detail how plants grow and work. Genetics is a powerful tool for helping us to obtain such an understanding. Using it we are able to analyse the whole genetic make-up (the genome) of plants to discover all the genes required for them to develop and operate correctly. We can use this information to study variants that have a defect in a particular gene (or genes) in which we are interested. This helps us to understand how the gene works when it is operating normally and its role in the plant. Many species of plant have had their whole genome sequenced already, but there are still thousands of their genes whose role in the plant is not understood. To obtain plants that bear a defective gene we can treat seeds with a chemical or radiation that damages the DNA coding for that gene. The offspring from these treated seeds will bear a large number of defects in their genomes. By producing a large population of offspring we can make every gene in the genome bear a defect. The problem then is to find the plant in the population that has a defect in the gene in which you are interested. We have developed methods that can sort out defective genes of interest and find the plants that contain them, so we can find out the role of the gene. This whole process is known as reverse genetics. No one chemical or physical means can induce all the defects we need to study particular genes so we need to use several different methods. In a previous project we set up a resource for the plant science research community so that they can discover the function of their particular genes of interest. We did this for legumes and brassicas (treated with chemicals) that contain plants bearing different forms of defective genes, but now we would like to do it for major UK cereal crops to help both scientists and plant breeders. We have developed special methods based on high throughput machines (sequencers) that can detect the defects when compared to the normal gene. Now we wish to develop methods that will do this in a more efficient and cost-effective manner. Scientists can then send us information about the gene of interest, for example, a gene from oats or barley, and we can then look for defects in their specific gene in our populations of thousands of plants. We then send them seeds from the plant that they can grow to study the action of the defective gene in that plant. All the information that we gather about our plants and their thousand upon thousands of genes will be stored in a computer database that we have constructed especially for this project, although it will be written in such a way that others can use it as well. It will also be available to use on the worldwide web so that a scientist anywhere in the UK or the World can come and browse to see if the database contains information about their gene of interest. The reason for wanting to do this is to improve the ability of crop plants to grow in different environments, especially adverse ones, to improve the quality of our food, and to help the farmer work in a sustainable way using less added fertiliser and fewer herbicides and pesticides.
在不断变化的气候条件下,我们不断尝试改良作物,以实现更可持续的农业实践。要做到这一点,我们需要非常详细地了解植物如何生长和工作。遗传学是帮助我们获得这种理解的有力工具。使用它,我们能够分析植物的整个遗传组成(基因组),以发现它们正确发育和运作所需的所有基因。我们可以利用这些信息来研究我们感兴趣的特定基因(或基因)中存在缺陷的变体。这有助于我们了解基因在正常运作时是如何工作的,以及它在植物中的作用。许多植物物种的全基因组测序已经完成,但仍有数千个基因在植物中的作用尚不清楚。为了获得带有缺陷基因的植物,我们可以用化学物质或辐射处理种子,破坏编码该基因的DNA。这些经过处理的种子的后代将在其基因组中携带大量缺陷。通过生产大量的后代,我们可以使基因组中的每一个基因都有缺陷。接下来的问题是在种群中找到你感兴趣的基因有缺陷的植物。我们已经开发出了可以挑选出感兴趣的缺陷基因并找到含有它们的植物的方法,因此我们可以找出基因的作用。整个过程被称为反向遗传学。没有一种化学或物理方法可以诱导我们研究特定基因所需的所有缺陷,因此我们需要使用几种不同的方法。在之前的一个项目中,我们为植物科学研究社区建立了一个资源,以便他们可以发现他们感兴趣的特定基因的功能。我们对含有不同形式缺陷基因的豆科植物和芸苔属植物(用化学物质处理)进行了这项研究,但现在我们想对英国主要的谷类作物进行这项研究,以帮助科学家和植物育种家。我们已经开发了基于高通量机器(测序仪)的特殊方法,可以检测与正常基因相比的缺陷。现在,我们希望开发出能够以更有效和更具成本效益的方式做到这一点的方法。然后科学家可以向我们发送有关感兴趣的基因的信息,例如燕麦或大麦的基因,然后我们可以在数千种植物中寻找特定基因的缺陷。然后我们给他们送去他们可以种植的植物的种子,以研究该植物中缺陷基因的作用。我们收集的关于我们的植物和它们成千上万的基因的所有信息都将存储在我们专门为这个项目构建的计算机数据库中,尽管它将以其他人也可以使用的方式编写。它也可以在全球网络上使用,这样英国或世界任何地方的科学家都可以来浏览数据库,看看是否包含有关他们感兴趣的基因的信息。想要这样做的原因是为了提高作物在不同环境中生长的能力,特别是在不利的环境中,以提高我们的食物质量,并帮助农民以可持续的方式使用更少的肥料和更少的除草剂和杀虫剂。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FANCM Limits Meiotic Crossovers in Brassica Crops.
- DOI:10.3389/fpls.2018.00368
- 发表时间:2018
- 期刊:
- 影响因子:5.6
- 作者:Blary A;Gonzalo A;Eber F;Bérard A;Bergès H;Bessoltane N;Charif D;Charpentier C;Cromer L;Fourment J;Genevriez C;Le Paslier MC;Lodé M;Lucas MO;Nesi N;Lloyd A;Chèvre AM;Jenczewski E
- 通讯作者:Jenczewski E
SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.
- DOI:10.1371/journal.pgen.1005623
- 发表时间:2015-10
- 期刊:
- 影响因子:4.5
- 作者:Qiu L;Lin JS;Xu J;Sato S;Parniske M;Wang TL;Downie JA;Xie F
- 通讯作者:Xie F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Wang其他文献
Trevor Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Wang', 18)}}的其他基金
Improving the UK knowledge-base on sugar-storing cereals for biofuels
改善英国关于用于生物燃料的储糖谷物的知识库
- 批准号:
BB/H531443/1 - 财政年份:2010
- 资助金额:
$ 77.51万 - 项目类别:
Research Grant
An integrated informatics and resources platform for Reverse Genetics in dicots (RevGenUK)
双子叶植物反向遗传学的综合信息学和资源平台 (RevGenUK)
- 批准号:
BB/F010591/1 - 财政年份:2008
- 资助金额:
$ 77.51万 - 项目类别:
Research Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
- 批准号:
10092859 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
EU-Funded
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
- 批准号:
10100109 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Collaborative R&D
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
EU-Funded
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Discovery Projects
PhD in the Next Generation of Organic LEDs
下一代有机 LED 博士
- 批准号:
2904651 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Studentship
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
- 批准号:
EP/Z531078/1 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Research Grant
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Fellowship
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant