Truly Predicting Root Uptake of Water: Case Study with Wheat

真正预测根部对水分的吸收:小麦案例研究

基本信息

  • 批准号:
    BB/J000868/1
  • 负责人:
  • 金额:
    $ 37.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

We heavily rely on soil to support the crops on which we depend. Less obviously we also rely on soil for a host of 'free services' from which we benefit. For example, soil buffers the hydrological system greatly reducing the risk of flooding after heavy rain; soil contains very large quantities of carbon which would otherwise be released into the atmosphere where it would contribute to climate change. Given its importance it is not surprising that soil, especially its interaction with plant roots, has been extensively researched. However the complex and opaque nature of soil has always made it a difficult medium to study. Soil is complex in that it is composed of different materials (mineral particles, organic matter, water, microrganisms) of all shapes and sizes (from centimetres to microns) which aggregate together to form a complex porous material. While the function of soil is determined by the processes taking place at the micro-scale (often called pore scale), within this complex material we have traditionally only been able to measure and observe soil function at the larger, macro-scale (usually referred to as the field scale). We can manipulate soil systems at the macro-scale and empirically observe what occurs, and this empirical description is useful, but it offers no scope to truly predict how the system would respond to modification. This is important because we have the potential and most likely the future need to manipulate the underlying processes at the microscale (in both plants and soil). For example we will need to know: should our crops root deeper? Would a change in root architecture be useful? To what extent can roots adapt to stresses in the soil physical environment? What management induced changes to soil structure are desirable for future environments? Evaluating such possibilities at the field scale currently requires case by case empirical investigation with little direction offered by any underlying theory; this is a huge gap in current knowledge. Even if good theories existed to explain soil-root interactions at the micro-scale, it is not clear how this could be applied to the field scale. Understanding and manipulating the system at the scale of <1mm is all very well, but we want to make a difference at the scale of >10 kms! We need to be able to 'scale up' our micro-knowledge to a scale that is useful. Progress can be made to address the microscale understanding of soil-root interactions, however this progress will only be of real importance if we also find ways to scale up to the field situation. This is also a huge gap in knowledge. These knowledge gaps can now be addressed as a result of two recent methodological developments. Firstly new experimental techniques based on X-ray Computed Tomography (CT) are making it easier to visualise and quantify soil and root micro-structure in a non-invasive manner. Secondly, mathematical homogenisation theory offers new ways to correctly scale up micro-scale processes to macro-scale models thereby addressing the scale problem. Integrating these two new methods for the first time we will consider the specific question of water movement in soils and its uptake by wheat, an important crop for UK agriculture. We will undertake experiments to measure the micro-structure of soils and investigate how water passes through these soils to the roots of plants. Our aim will be to use this information to develop and test theoretical models of water movement and uptake and use these to evaluate the performance of different wheat root architectures. We will do this in a way that is specifically designed to enable us to 'scale up' the results so we can make predictions at the field scale, based on the observable micro-scopic characteristics of soil. Thus, because of the generic methodology produced within this project the results are not only applicable for wheat, but for wide range of agricultural crops.
我们严重依赖土壤来支持我们赖以生存的作物。不那么明显的是,我们也依赖土壤提供大量的“免费服务”,我们从中受益。例如,土壤缓冲了水文系统,大大减少了大雨后洪水泛滥的风险;土壤中含有大量的碳,否则这些碳将被释放到大气中,从而导致气候变化。鉴于其重要性,土壤,特别是其与植物根系的相互作用,已被广泛研究,这并不奇怪。然而,土壤的复杂性和不透明性一直使其成为一种难以研究的介质。土壤是复杂的,因为它是由各种形状和大小(从厘米到微米)的不同材料(矿物颗粒,有机物,水,微生物)组成,这些材料聚集在一起形成复杂的多孔材料。虽然土壤的功能是由发生在微观尺度(通常称为孔隙尺度)的过程决定的,但在这种复杂的材料中,我们传统上只能在更大的宏观尺度(通常称为田间尺度)上测量和观察土壤功能。我们可以在宏观尺度上操纵土壤系统,并凭经验观察发生了什么,这种经验描述是有用的,但它没有提供真正预测系统如何应对修改的范围。这一点很重要,因为我们有潜力,而且未来很可能需要在微观尺度上(植物和土壤)操纵潜在的过程。例如,我们需要知道:我们的作物是否应该扎根更深?根结构的改变是否有用?根在多大程度上能适应土壤物理环境的压力?什么样的管理引起的土壤结构变化是未来环境所期望的?目前,在实地规模上评估这种可能性需要逐个案例的实证研究,而任何基础理论都没有提供任何指导;这是目前知识的巨大差距。即使存在很好的理论来解释微观尺度上的土壤-根系相互作用,也不清楚如何将其应用于田间尺度。在<1 mm的尺度上理解和操纵系统是非常好的,但我们希望在>10 km的尺度上有所不同!我们需要能够将我们的微观知识“扩大”到有用的规模。可以取得进展,以解决土壤-根系相互作用的微观尺度的理解,但这一进展将只有真实的重要性,如果我们也找到方法来扩大到现场的情况。这也是一个巨大的知识差距。由于最近在方法上的两个发展,这些知识差距现在可以得到解决。首先,基于X射线计算机断层扫描(CT)的新实验技术使得以非侵入性方式可视化和量化土壤和根系微观结构变得更加容易。其次,数学均匀化理论提供了新的方法来正确地将微观尺度的过程放大到宏观尺度的模型,从而解决尺度问题。第一次整合这两种新方法,我们将考虑土壤中水分运动的具体问题,以及小麦的吸收,小麦是英国农业的重要作物。我们将进行实验来测量土壤的微观结构,并研究水如何通过这些土壤到达植物的根部。我们的目标是利用这些信息来开发和测试水分运动和吸收的理论模型,并使用这些来评估不同小麦根结构的性能。我们将以一种专门设计的方式来实现这一点,使我们能够“扩大”结果,以便我们可以根据土壤的可观察微观特征在实地规模上进行预测。因此,由于该项目中产生的通用方法,结果不仅适用于小麦,而且适用于广泛的农作物。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MULTISCALE MODELS OF METALLIC PARTICLES IN NEMATIC LIQUID CRYSTALS
  • DOI:
    10.1137/18m1163919
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bennett, Thomas P.;D'Alessandro, Giampaolo;Daly, Keith R.
  • 通讯作者:
    Daly, Keith R.
Imaging the interaction of roots and phosphate fertiliser granules using 4D X-ray tomography
  • DOI:
    10.1007/s11104-015-2425-5
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ahmed, Sharif;Klassen, Trudy Naugler;Roose, Tiina
  • 通讯作者:
    Roose, Tiina
The effect of root exudates on rhizosphere water dynamics.
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Image-based modelling of nutrient movement in and around the rhizosphere.
  • DOI:
    10.1093/jxb/erv544
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Daly KR;Keyes SD;Masum S;Roose T
  • 通讯作者:
    Roose T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiina Roose其他文献

Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics – Review and research perspectives
用于缩放纳米到宏观尺度根际动态的新兴传感、成像和计算技术——综述与研究视角
  • DOI:
    10.1016/j.soilbio.2023.109253
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    10.300
  • 作者:
    Amir H. Ahkami;Odeta Qafoku;Tiina Roose;Quanbing Mou;Yi Lu;Zoe G. Cardon;Yuxin Wu;Chunwei Chou;Joshua B. Fisher;Tamas Varga;Pubudu Handakumbura;Jayde A. Aufrecht;Arunima Bhattacharjee;James J. Moran
  • 通讯作者:
    James J. Moran
Investigation of microvascular morphological measures for skeletal muscle tissue oxygenation by image-based modelling in three dimensions
通过三维图像建模研究骨骼肌组织氧合的微血管形态学测量
  • DOI:
    10.1098/rsif.2017.0635
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Berit Zeller;K. Daly;Geraldine F. Clough;Philipp Schneider;Tiina Roose
  • 通讯作者:
    Tiina Roose

Tiina Roose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiina Roose', 18)}}的其他基金

Fertiliser Use Efficiency with AI
利用人工智能提高肥料使用效率
  • 批准号:
    EP/Y008154/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
'Multi-Soil' Multimodal image based modelling in soil
“多土壤”基于多模态图像的土壤建模
  • 批准号:
    BB/R021155/1
  • 财政年份:
    2018
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Real-time in situ sensing of soil nitrogen status to promote enhanced nitrogen use efficiency in agricultural systems
实时原位传感土壤氮状况,促进提高农业系统氮利用效率
  • 批准号:
    BB/P004180/1
  • 财政年份:
    2017
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Rhizosphere by design: breeding to select root traits that physically manipulate soil
根际设计:育种以选择物理操纵土壤的根性状
  • 批准号:
    BB/L025620/1
  • 财政年份:
    2014
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Long-lived Radionuclides in the Surface Environment (LO-RISE) - Mechanistic Studies of Speciation, Environmental Transport and Transfer
地表环境中的长寿命放射性核素 (LO-RISE) - 形态形成、环境传输和转移的机制研究
  • 批准号:
    NE/L000237/1
  • 财政年份:
    2013
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Rice germplasm for high grain Zn content and tolerance of Zn deficient soils
高籽粒锌含量和耐缺锌土壤的水稻种质
  • 批准号:
    BB/J011460/1
  • 财政年份:
    2012
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Improving the sustainability of phosphorus use in arable farming
提高耕作中磷使用的可持续性
  • 批准号:
    BB/I024283/1
  • 财政年份:
    2011
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant

相似海外基金

NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
  • 批准号:
    2305659
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Fellowship Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
  • 批准号:
    10106145
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
  • 批准号:
    24K09176
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
  • 批准号:
    MR/X019616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了