The role of the oxylipin OPDA in the seasonal sensitivity of seed dormancy
氧脂素 OPDA 在种子休眠季节敏感性中的作用
基本信息
- 批准号:BB/J000949/2
- 负责人:
- 金额:$ 12.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seasonal plant growth, typically initiated with the onset of bud burst or seed germination in the spring and terminated with the onset of dormancy in the progression through autumn to winter, is a well recognised natural phenomenon that can affect annual atmospheric gas exchange on a global scale. Environmental cues such as day-length and temperature are well known to directly affect plant growth and development, but much less is known about how such cues are used by plants to establish dormancy in advance of major seasonal change. There is a growing interest in understanding the underlying mechanism responsible for these predictive responses, not least because such knowledge will help us to predict how wild plants and crops will respond to environmental change. We have recently made two important discoveries that point to a lipid signalling molecule, OPDA, having a central role in controlling dormancy in seeds and being involved in the transfer of information governing seasonal growth control from one generation to the next. Both of these discoveries were made in the model plant species Arabidopsis thaliana, but knowledge gained will be applicable to other plant species. In the first discovery we found that elevated OPDA is responsible for increased seed dormancy in several Arabidopsis mutants. Exogenous OPDA application inhibits germination and we have evidence to show it involves at least one downstream target, a transcription factor protein called ABI5 that increases in abundance in the presence of OPDA and is essential for the OPDA imposed dormancy in beta-oxidation mutant seeds. In the second discovery we found that the day-length in which Arabidopsis plants are grown has a dramatic effect on the levels of OPDA in vegetative tissues and the dormancy state of seeds in the next generation. This effect on OPDA and seed dormancy is dependent on a protein called Flowering Locus T (FT) that is involved in regulating expression in vegetative tissues of a key gene involved in the synthesis of OPDA. A major question that now needs to be addressed is how the 'memory' of day-length in vegetative tissues is transmitted to the next generation and manifested in the dormancy status of seeds. Our preliminary studies indicate that OPDA plays a central role in the memory retention across generations from vegetative material to seeds. Furthermore, other recent work suggests a similar mechanism involving the FT protein controls dormancy in vegetative buds in perennial species such as poplar trees. The aim of our research is to establish the mechanism by which environmental signals influence seasonal growth by modification of the dormancy state of vegetative buds and seeds. To achieve this aim we will first establish how the FT protein regulates OPDA levels in vegetative tissues and establish the mechanism by which FT-dependent information is transferred from one generation to the next. The most likely mechanism is one involving epigenetic non-permanent modification of DNA that can affect gene expression and hence traits and phenotypes from one generation to the next. In parallel with this work we will establish how environmental signals during seed development influence dormancy state and OPDA levels. We will also elucidate the signal transduction pathway involved in the OPDA mediated control of seed dormancy. Finally, building on our remarkable observation that the environment experienced during seed set influences the growth rate of plants derived from that seed, we will investigate if an epigenetic OPDA-dependent memory of the seed maturation environment is involved. The outputs of this research will impact on the way we predict how plant ecosystems respond to environmental change. It may also impact on the development of improved agronomic practice for the production of seeds that are less dormant and/or give rise to crops that grow more vigorously.
季节性植物生长通常始于春季萌芽或种子萌发,并在秋季至冬季的过程中随着休眠的开始而终止,这是一种公认的自然现象,可以影响全球范围内的年度大气气体交换。众所周知,环境因素如日照长度和温度直接影响植物的生长和发育,但关于植物如何利用这些因素在主要季节变化之前建立休眠却知之甚少。人们对理解这些预测性反应的潜在机制越来越感兴趣,尤其是因为这些知识将帮助我们预测野生植物和作物将如何应对环境变化。我们最近取得了两个重要的发现,指向脂质信号分子,OPDA,具有核心作用,在控制种子休眠,并参与信息转移管理季节性生长控制从一代到下一代。这两个发现都是在模式植物拟南芥中发现的,但所获得的知识将适用于其他植物物种。在第一个发现中,我们发现OPDA升高是几个拟南芥突变体种子休眠增加的原因。外源OPDA的应用抑制发芽,我们有证据表明,它涉及至少一个下游目标,一个转录因子蛋白ABI 5,在OPDA的存在下增加的丰度,是必不可少的OPDA施加休眠的β-氧化突变体种子。在第二个发现中,我们发现拟南芥植物生长的日照长度对营养组织中OPDA的水平和下一代种子的休眠状态有显著影响。这种对OPDA和种子休眠的影响依赖于一种称为开花位点T(FT)的蛋白质,该蛋白质参与调节营养组织中参与OPDA合成的关键基因的表达。现在需要解决的一个主要问题是,营养组织中对日照长度的“记忆”如何传递给下一代,并表现在种子的休眠状态中。我们的初步研究表明,OPDA在从植物材料到种子的世代记忆保持中起着核心作用。此外,最近的其他研究表明,在多年生植物(如白杨)中,FT蛋白控制营养芽休眠的机制类似。我们的研究目的是通过改变营养芽和种子的休眠状态来建立环境信号影响季节性生长的机制。为了实现这一目标,我们将首先建立FT蛋白如何调节营养组织中的OPDA水平,并建立FT依赖的信息从一代转移到下一代的机制。最有可能的机制是涉及DNA的表观遗传非永久性修饰的机制,这种修饰可以影响基因表达,从而影响一代又一代的性状和表型。在这项工作的同时,我们将建立在种子发育过程中的环境信号如何影响休眠状态和OPDA水平。我们还将阐明参与OPDA介导的种子休眠控制的信号转导途径。最后,建立在我们显着的观察,在种子设置过程中经历的环境影响来自该种子的植物的生长速度,我们将调查是否涉及种子成熟环境的表观遗传OPDA依赖的记忆。这项研究的结果将影响我们预测植物生态系统如何应对环境变化的方式。它还可能影响改进农艺做法的发展,以生产休眠较少和/或生长更旺盛的作物的种子。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.
- DOI:10.1093/jxb/erw028
- 发表时间:2016-04
- 期刊:
- 影响因子:6.9
- 作者:Dave A;Vaistij FE;Gilday AD;Penfield SD;Graham IA
- 通讯作者:Graham IA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Penfield其他文献
Steven Penfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Penfield', 18)}}的其他基金
Competitive trans-generational control of seed dormancy via stable inheritance of gametophytic epigenomes
通过配子体表观基因组的稳定遗传对种子休眠的竞争性跨代控制
- 批准号:
BB/X015793/1 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Unravelling the effect of winter warming on flowering time, flower fertility and crop yield
揭示冬季变暖对开花时间、花卉肥力和作物产量的影响
- 批准号:
BB/W000415/1 - 财政年份:2022
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
The maternal control of progeny seed physiology
后代种子生理的母体控制
- 批准号:
BB/T003030/1 - 财政年份:2020
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Integration of seasonal signals through a two gene mutual repression switch in flower buds
通过花蕾中两个基因相互抑制开关整合季节信号
- 批准号:
BB/S003878/1 - 财政年份:2019
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Control of seed size and yield by vernalisation
通过春化控制种子大小和产量
- 批准号:
BB/R004196/1 - 财政年份:2018
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Genomic approaches to increasing resilience in oilseed rape seedling establishment in the Yangtze River basin
提高长江流域油菜幼苗恢复能力的基因组方法
- 批准号:
BB/P022677/1 - 财政年份:2017
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
China Partnering Award: towards a common toolkit for oilseed rape research
中国合作奖:建立油菜研究通用工具包
- 批准号:
BB/P025706/1 - 财政年份:2017
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Automation of seed performance testing
种子性能测试自动化
- 批准号:
BB/R012369/1 - 财政年份:2017
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Exploiting seed coat properties to improve uniformity and resilience in Brassica seed vigour
利用种皮特性提高芸苔属种子活力的均匀性和弹性
- 批准号:
BB/M017869/1 - 财政年份:2015
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
Controlling seed coat plasticity for seed quality in industry
控制种皮可塑性以提高工业种子质量
- 批准号:
BB/L003198/2 - 财政年份:2014
- 资助金额:
$ 12.15万 - 项目类别:
Research Grant
相似海外基金
Linoleic acid-derived oxylipin species and cognitive function in type 2 diabetes mellitus
亚油酸衍生的氧脂素种类与 2 型糖尿病的认知功能
- 批准号:
495437 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Collaborative Research: Quantifying the impact of oxylipin chemical signaling on microbial community dynamics and biogeochemical cycling
合作研究:量化氧脂素化学信号对微生物群落动态和生物地球化学循环的影响
- 批准号:
2231921 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Identification and application of key enzyme in Marchanti polymorpha for elucidation of novel oxylipin biosynthetic pathway
地钱花关键酶的鉴定及应用,阐明新的氧脂素生物合成途径
- 批准号:
23K05047 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Quantifying the impact of oxylipin chemical signaling on microbial community dynamics and biogeochemical cycling
合作研究:量化氧脂素化学信号对微生物群落动态和生物地球化学循环的影响
- 批准号:
2231922 - 财政年份:2023
- 资助金额:
$ 12.15万 - 项目类别:
Continuing Grant
Oxylipin Signaling in Congenital Heart Disease
先天性心脏病中的 Oxylipin 信号传导
- 批准号:
10321673 - 财政年份:2021
- 资助金额:
$ 12.15万 - 项目类别:
Oxylipin Signaling in Congenital Heart Disease
先天性心脏病中的 Oxylipin 信号传导
- 批准号:
10544812 - 财政年份:2021
- 资助金额:
$ 12.15万 - 项目类别:
揮発性オキシリピン生成機構から紐解く担子菌の生存戦略
挥发性氧脂素产生机制揭示担子菌的生存策略
- 批准号:
21J14407 - 财政年份:2021
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Detail analysis of esterified oxylipin; Exploring involvement in neurodegenerative disorders
酯化氧脂的详细分析;
- 批准号:
20K15465 - 财政年份:2020
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Testing the function of oxylipin signalling molecules in host-parasite interactions
测试氧脂质信号分子在宿主-寄生虫相互作用中的功能
- 批准号:
540065-2019 - 财政年份:2019
- 资助金额:
$ 12.15万 - 项目类别:
University Undergraduate Student Research Awards
Study of ABA action in fruit related to optical response and effect of ABA on oxylipin
果实中ABA作用与光学响应相关的研究以及ABA对氧脂素的影响
- 批准号:
16H04872 - 财政年份:2016
- 资助金额:
$ 12.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)