Signalling role(s) for the unconventional RdgB proteins: are they lipid sensors for phosphatidic acid ?
非常规 RdgB 蛋白的信号传导作用:它们是磷脂酸的脂质传感器吗?
基本信息
- 批准号:BB/J005606/1
- 负责人:
- 金额:$ 49.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High blood pressure causes an increase in the size of the heart (cardiac hypertrophy) and is a major risk factor for the development of heart failure. One in five people die from this condition. Angiotensin II is a hormone that stimulates cardiac hypertrophy and it functions by binding to the Angiotensin II type I (ATI) receptor. A complex programme of intracellular signalling is initiated to stimulate hypertrophy and a new protein called ATRAP has been recently identified that protects against the effects of Angiotensin II. ATRAP was discovered because it binds to the ATI receptor but how ATRAP suppresses cardiac hypertrophy is not known. We have made an unexpected connection between ATRAP and a lipid binding protein, RdgB-beta. We propose to define the connection between the two proteins, ATRAP and RdgB-beta in the context of lipid signalling via enzymes called phospholipases that produce the 'signalling lipid', phosphatidic acid (PA). We will establish how this protein-lipid network operates during Angiotensin II signalling. The activity of phospholipases is stimulated when Angiotensin II binds to the receptor. RdgB-beta is uncharacterised and we have discovered that it has unusual lipid binding properties - it binds PA. Our concept is that RdgB-beta sequesters the 'PA' signal and therefore restrains the signalling cascade resulting in inhibition of cardiac hypertrophy. We will examine how RdgB-beta binds 'PA' and disposes of it. Because ATRAP binds RdgB-beta we think that a 'bridge' between two membranes is formed. This allows the 'PA' to be removed from the plasma membrane where signalling occurs and sent to the compartment where lipids are re-used for making new lipids. To form the bridge, RdgB-beta has to interact with ATRAP on one membrane and other proteins on the opposite membrane. We will therefore identify these proteins by using RdgB-beta as bait to fish for new proteins.We will also study the importance of RdgB-beta and ATRAP by increasing or decreasing the protein levels in the cells. This will inform us on how Angiotensin II signalling is affected. If RdgB-beta reinforces the restraint put by ATRAP on Angiotensin II signalling, this will provide strong evidence that the molecular mechanism used by ATRAP is to participate in the removal of the signalling lipid, PA. To further test the model, we will delete the gene for RdgB-beta in a model organism (Drosophila) and examine the phenotype in collaboration with our project partner in Bangalore, India. To determine the importance of PA binding to RdgB-beta, we will make mutant proteins that cannot bind PA. These mutants will be examined for rescue of the fly defect. The interaction between RdgB-beta and ATRAP together with the binding of PA to RdgB-beta could provide the molecular explanation of how ATRAP is able to suppress the function of Angiotensin II signalling and could therefore offer a novel therapeutic target for intervention in cardiovascular diseases. In the clinic, inhibition of Angiotensin II signalling by ACE inhibitors that prevents the production of Angiotensin II or drugs that prevent binding of Angiotensin II to its receptor are used for treatment for hypertension. Since most drugs have side-effects, drug combination that targets different systems are often used. Therefore the proposed research could well lead to a different molecular target which could provide a more effective treatment. Understanding how the endogenous inhibitor of Angiotensin II signalling, ATRAP, functions, may provide new strategies for drug targeting. Because ATRAP interacts with RdgB-beta, the possibility that targeting RdgB-beta may provide a unique opportunity to generate a new class of drugs that could be based on binding small hydrophobic molecules in the lipid binding pocket of RdgB-beta. The benefit derived from such drugs is huge as high blood pressure is one of the most common diseases that afflict humans.
高血压导致心脏体积增大(心脏肥大),是心力衰竭发展的主要危险因素。五分之一的人死于这种疾病。血管紧张素II是一种刺激心脏肥大的激素,它通过与血管紧张素II I型(ATI)受体结合发挥作用。启动一个复杂的细胞内信号传导程序以刺激肥大,并且最近已经鉴定出一种称为ATRAP的新蛋白质,其保护免受血管紧张素II的影响。ATRAP被发现是因为它与ATI受体结合,但ATRAP如何抑制心脏肥大尚不清楚。我们已经在ATRAP和脂质结合蛋白RdgB-β之间建立了意想不到的联系。我们建议定义这两种蛋白质之间的连接,ATRAP和RdgB-β在脂质信号通过酶称为磷脂酶,产生的'信号脂质',磷脂酸(PA)的上下文中。我们将建立这种蛋白质-脂质网络在血管紧张素II信号传导过程中的作用。当血管紧张素II与受体结合时,磷脂酶的活性被刺激。RdgB-beta是未表征的,我们发现它具有不寻常的脂质结合特性-它结合PA。我们的概念是,RdgB-β螯合'PA'信号,因此抑制信号级联反应,从而抑制心脏肥大。我们将研究RdgB-β如何结合PA并处理它。因为ATRAP结合RdgB-β,我们认为在两个膜之间形成了一个“桥”。这允许“PA”从发生信号传导的质膜上去除,并被发送到脂质被重新用于制造新脂质的隔室。为了形成桥,RdgB-β必须与一个膜上的ATRAP和另一个膜上的其他蛋白质相互作用。因此,我们将通过使用RdgB-beta作为诱饵来寻找新蛋白质来鉴定这些蛋白质。我们还将通过增加或减少细胞中的蛋白质水平来研究RdgB-beta和ATRAP的重要性。这将告诉我们血管紧张素II信号是如何受到影响的。如果RdgB-β加强ATRAP对血管紧张素II信号传导的抑制,这将提供强有力的证据表明ATRAP使用的分子机制是参与去除信号脂质PA。为了进一步测试该模型,我们将删除模式生物(果蝇)中的RdgB-β基因,并与印度班加罗尔的项目合作伙伴合作检查表型。为了确定PA与RdgB-β结合的重要性,我们将制备不能结合PA的突变蛋白。将检查这些突变体以挽救苍蝇缺陷。RdgB-beta和ATRAP之间的相互作用以及PA与RdgB-beta的结合可以提供ATRAP如何能够抑制血管紧张素II信号传导功能的分子解释,因此可以为心血管疾病的干预提供新的治疗靶点。在临床中,通过防止血管紧张素II产生的ACE抑制剂或防止血管紧张素II与其受体结合的药物抑制血管紧张素II信号传导用于治疗高血压。由于大多数药物都有副作用,因此经常使用针对不同系统的药物组合。因此,拟议的研究很可能导致一个不同的分子靶点,可以提供更有效的治疗。了解血管紧张素II信号传导的内源性抑制剂ATRAP的功能,可能为药物靶向提供新的策略。由于ATRAP与RdgB-β相互作用,靶向RdgB-β的可能性可能提供一个独特的机会来产生一类新的药物,这些药物可以基于结合RdgB-β的脂质结合口袋中的小疏水分子。这些药物带来的好处是巨大的,因为高血压是折磨人类的最常见疾病之一。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling.
- DOI:10.1016/j.celrep.2018.07.012
- 发表时间:2018-08-07
- 期刊:
- 影响因子:8.8
- 作者:Ashlin TG;Blunsom NJ;Ghosh M;Cockcroft S;Rihel J
- 通讯作者:Rihel J
Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1.
- DOI:10.1016/j.bbalip.2017.12.005
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Blunsom NJ;Gomez-Espinosa E;Ashlin TG;Cockcroft S
- 通讯作者:Cockcroft S
Courier service for phosphatidylinositol: PITPs deliver on demand.
- DOI:10.1016/j.bbalip.2021.158985
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Ashlin TG;Blunsom NJ;Cockcroft S
- 通讯作者:Cockcroft S
Phospholipid transport protein function at organelle contact sites.
- DOI:10.1016/j.ceb.2018.04.011
- 发表时间:2018-08
- 期刊:
- 影响因子:7.5
- 作者:Cockcroft S;Raghu P
- 通讯作者:Raghu P
Mammalian lipids: structure, synthesis and function.
- DOI:10.1042/ebc20200067
- 发表时间:2021-11-02
- 期刊:
- 影响因子:6.4
- 作者:Cockcroft S
- 通讯作者:Cockcroft S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shamshad Cockcroft其他文献
Sticky fingers grab a lipid
粘手指抓住一个脂质
- DOI:
10.1038/28752 - 发表时间:
1998-07-30 - 期刊:
- 影响因子:48.500
- 作者:
Claudia Wiedemann;Shamshad Cockcroft - 通讯作者:
Shamshad Cockcroft
Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists, by histamine and by caerulein.
胆碱能和肾上腺素能激动剂、组胺和雨蛙素刺激各种组织中的磷脂酰肌醇周转。
- DOI:
10.1042/bj1820669 - 发表时间:
1979 - 期刊:
- 影响因子:0
- 作者:
L. Jones;Shamshad Cockcroft;R. H. Michell - 通讯作者:
R. H. Michell
Potentiation and inhibition of secretion from neutrophils by phorbol ester
佛波酯对中性粒细胞分泌的增强和抑制
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:3.5
- 作者:
M. Barrowman;Shamshad Cockcroft;B. Gomperts - 通讯作者:
B. Gomperts
Shamshad Cockcroft的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
- 批准号:82372275
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
- 批准号:82371070
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Novel unconventional myosins in B cell homeostasis
B 细胞稳态中的新型非常规肌球蛋白
- 批准号:
10733725 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
The unconventional Ark3 cluster in Toxoplasma gondii
弓形虫中非常规的 Ark3 簇
- 批准号:
10511468 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
- 批准号:
10372324 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
An 'unconventional' approach to the COVID 19 pandemic: the role of T cells in virus recognition
应对 COVID 19 大流行的“非常规”方法:T 细胞在病毒识别中的作用
- 批准号:
2734802 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Studentship
The unconventional Ark3 cluster in Toxoplasma gondii
弓形虫中非常规的 Ark3 簇
- 批准号:
10650416 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
- 批准号:
10772905 - 财政年份:2022
- 资助金额:
$ 49.21万 - 项目类别:
Perforin 2 controls unconventional cytokine release from mucosal APC
穿孔素 2 控制粘膜 APC 的非常规细胞因子释放
- 批准号:
10629434 - 财政年份:2021
- 资助金额:
$ 49.21万 - 项目类别:
Perforin 2 controls unconventional cytokine release from mucosal APC
穿孔素 2 控制粘膜 APC 的非常规细胞因子释放
- 批准号:
10283046 - 财政年份:2021
- 资助金额:
$ 49.21万 - 项目类别:
Examining Molecular Regulation of Unconventional Cytoplasmic Protein Secretion
检查非常规细胞质蛋白分泌的分子调节
- 批准号:
10448325 - 财政年份:2021
- 资助金额:
$ 49.21万 - 项目类别:
Examining Molecular Regulation of Unconventional Cytoplasmic Protein Secretion
检查非常规细胞质蛋白分泌的分子调节
- 批准号:
10188009 - 财政年份:2021
- 资助金额:
$ 49.21万 - 项目类别: