A novel pathway of cell cycle activation in root formative divisions
根形成分裂中细胞周期激活的新途径
基本信息
- 批准号:BB/J009199/1
- 负责人:
- 金额:$ 85.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We all learn at school that reproduction is a fundamental property of life, and the same is true of the cells from which organisms are built. All cells arise from a parent cell by division. Usually a cell divides to make two cells of the same type, increasing the population size. We refer to this as a "proliferative division", and is easy to think about in a tumour where there are many identical cells. However, when a complex organism is developing, for example as an embryo grows from a single initial fertilised egg cell, new cell types have to be produced. These arise from a special kind of division, known as a "formative division". In this case one daughter cell (or sometimes both daughter cells), are different from their parent cell and have a new identity. This process of formative division is also essential in the maintenance and function of stem cells- these are cells in the body that can undergo formative divisions to generate another stem cell and a new cell of different identity.We know a lot about the molecules that regulate the processes of proliferative cell divisions, in part because of their importance in cancer. The molecular and cellular aspects of the process of cell division are known as the "cell cycle". However we know very little about what different mechanisms operate in the cell cycle of formative divisions or indeed even if there are different mechanisms. We have been studying a particular type of formative division in the root of a plant called Arabidopsis. We study plants because the cells do not move around, and the identity of a cell is easy to establish because it is determined by its position in the root. We use Arabidopsis because it grows rapidly, there is a great wealth of earlier studies to draw on, and there are a lot of resources that make the research fast and relatively cheaper. The roots are also thin and transparent so we can study living roots using a confocal microscope that allows us to visualise the action of proteins and genes as cells divide. The root consist of concentric layers of cells, each layer with a different identity, wrapped around a central core that conducts water and nutrients.The particular division we have been studying involves the formation of two of these layers, the cortex and endodermis from a single layer of root ground tissue. The endodermis is a crucial tissue because it forms an impermeable layer controlling the movement of water and ions into the central conducting tissue. Without the endodermis the root cannot grow and function properly. This is exactly what happens in mutants of a gene called SHORT-ROOT. In this mutant, the formative divisions do not take place. In collaboration with a leading US group, we showed in a paper published last year in the journal "Nature" that SHORT-ROOT directly controls expression of a cell cycle regulating gene called cyclin D6, which is only switched on in cells carrying out the formative division. If cyclin D6 is missing, the formative division is not properly controlled. Cyclins work together with a partner protein called a cyclin-dependent kinase. This has now been identified, and mutants in this gene also have a defect in the formative division, confirming it is also involved. These two proteins do not normally work together, so we believe that we have identified a new mechanism by which the cell cycle is switched on in formative divisions, which also involves a third candidate we have identified. In this project, we will analyse this new mechanism in detail. We think it involves three feedback loops that all activate each other, so to understand them, we will use mathematical modelling to predict the effect of making changes to the system and test these predictions. We will carry out the work in collaboration with world-leading groups in the US, Holland and the UK, bringing exceptional expertise to bear on this problem.
我们在学校里都学到,繁殖是生命的基本属性,构成生物体的细胞也是如此。所有的细胞都是由亲本细胞分裂而产生的。通常一个细胞分裂成两个相同类型的细胞,增加种群的大小。我们称之为“增殖性分裂”,在有许多相同细胞的肿瘤中,这很容易理解。然而,当一个复杂的有机体正在发育时,例如,当一个胚胎从一个单一的初始受精卵细胞生长出来时,必须产生新的细胞类型。这些源自一种特殊的划分,称为“形成性划分”。在这种情况下,一个子细胞(有时是两个子细胞)与它们的亲本细胞不同,并具有新的身份。这种形成性分裂的过程对于干细胞的维持和功能也是必不可少的——干细胞是体内可以经历形成性分裂以产生另一个干细胞和具有不同身份的新细胞的细胞。我们对调节增殖细胞分裂过程的分子了解很多,部分原因是它们在癌症中的重要性。细胞分裂过程的分子和细胞方面被称为“细胞周期”。然而,我们对细胞形成分裂周期中不同的机制所知甚少,甚至不知道是否存在不同的机制。我们一直在研究一种叫做拟南芥的植物根部的一种特殊类型的形成分裂。我们研究植物是因为细胞不会到处移动,而且细胞的身份很容易确定,因为它是由它在根中的位置决定的。我们使用拟南芥,因为它生长迅速,有大量的早期研究可以借鉴,有很多资源使研究快速和相对便宜。根也很薄,透明,所以我们可以用共聚焦显微镜研究活根,这使我们能够看到蛋白质和基因在细胞分裂时的作用。根由同心圆的细胞层组成,每一层都有不同的特征,围绕着一个传导水和营养物质的核心。我们一直在研究的这种特殊的分裂涉及到两层的形成,皮层和内胚层,来自于一层根底组织。内胚层是一个至关重要的组织,因为它形成一个不渗透的层,控制水和离子进入中央传导组织的运动。没有内胚层,根就不能正常生长和发挥功能。这正是一种叫做SHORT-ROOT的基因突变所发生的情况。在这个突变体中,形成性的分裂没有发生。我们与一个领先的美国研究小组合作,在去年发表在《自然》(Nature)杂志上的一篇论文中表明,SHORT-ROOT直接控制一种叫做cyclin D6的细胞周期调节基因的表达,这种基因只在进行形成性分裂的细胞中启动。如果缺少周期蛋白D6,则形成性分裂没有得到适当的控制。细胞周期蛋白与一种称为细胞周期蛋白依赖性激酶的伙伴蛋白一起工作。现在已经确定了这一点,该基因的突变体在形成分裂中也有缺陷,证实了它也参与其中。这两种蛋白质通常不会一起工作,所以我们相信我们已经确定了一种新的机制,通过这种机制,细胞周期在形成分裂中开启,这也涉及到我们已经确定的第三种候选蛋白。在本项目中,我们将详细分析这一新机制。我们认为它包括三个相互激活的反馈回路,因此为了理解它们,我们将使用数学模型来预测对系统进行更改的效果并测试这些预测。我们将与美国、荷兰和英国的世界领先团队合作开展这项工作,为这一问题带来卓越的专业知识。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phytotracker, an information management system for easy recording and tracking of plants, seeds and plasmids.
- DOI:10.1186/1746-4811-8-43
- 发表时间:2012-10-13
- 期刊:
- 影响因子:5.1
- 作者:Nieuwland J;Sornay E;Marchbank A;de Graaf BH;Murray JA
- 通讯作者:Murray JA
Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size.
- DOI:10.1038/ncomms15060
- 发表时间:2017-04-27
- 期刊:
- 影响因子:16.6
- 作者:R Jones A;Forero-Vargas M;Withers SP;Smith RS;Traas J;Dewitte W;Murray JAH
- 通讯作者:Murray JAH
The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication.
- DOI:10.1093/jxb/ert009
- 发表时间:2013-02
- 期刊:
- 影响因子:6.9
- 作者:Wen B;Nieuwland J;Murray JA
- 通讯作者:Murray JA
Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6.
- DOI:10.1038/srep23586
- 发表时间:2016-03-29
- 期刊:
- 影响因子:4.6
- 作者:Nieuwland J;Stamm P;Wen B;Randall RS;Murray JA;Bassel GW
- 通讯作者:Bassel GW
WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche.
- DOI:10.1016/j.cub.2014.07.019
- 发表时间:2014-08-18
- 期刊:
- 影响因子:9.2
- 作者:Forzani, Celine;Aichinger, Ernst;Sornay, Emily;Willemsen, Viola;Laux, Thomas;Dewitte, Walter;Murray, James A. H.
- 通讯作者:Murray, James A. H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Murray其他文献
Risk construction in the reinfection discourses of HIV-positive men
HIV阳性男性再感染话语中的风险构建
- DOI:
10.1080/13698570500042272 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
B. Adam;W. Husbands;James Murray;J. Maxwell - 通讯作者:
J. Maxwell
Two snakebite antivenoms have potential to reduce Eswatini’s dependency upon a single, increasingly unavailable product: Results of preclinical efficacy testing
两种蛇咬伤抗蛇毒血清有可能减少史瓦帝尼对单一且日益难以获得的产品的依赖:临床前功效测试结果
- DOI:
10.1101/2022.05.16.492230 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
S. Menzies;T. Litschka;Rebecca J. Edge;Jaffer Alsolaiss;E. Crittenden;Steven R. Hall;Adam Westhorpe;B. Thomas;James Murray;Nondusimo Shongwe;S. Padidar;D. Lalloo;N. Casewell;Jonathan Pons;R. Harrison - 通讯作者:
R. Harrison
In vitro oxygen availability modulates the effect of artesunate on HeLa cells.
体外氧气利用率调节青蒿琥酯对 HeLa 细胞的作用。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2
- 作者:
James Murray;S. Gannon;S. Rawe;James Murphy - 通讯作者:
James Murphy
Promises and perils of generative artificial intelligence: a narrative review informing its ethical and practical applications in clinical exercise physiology
- DOI:
10.1186/s13102-025-01182-7 - 发表时间:
2025-05-26 - 期刊:
- 影响因子:2.800
- 作者:
Oscar Lederman;Alessandro Llana;James Murray;Robert Stanton;Ritesh Chugh;Darren Haywood;Amanda Burdett;Geoff Warman;Joanne Walker;Nicolas H. Hart - 通讯作者:
Nicolas H. Hart
Fiscal policy reactions and impact over the labor income distribution
- DOI:
10.1016/j.eap.2024.07.007 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
James Murray - 通讯作者:
James Murray
James Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Murray', 18)}}的其他基金
Platform technology for full dynamic range infectious disease detection and quantification.
用于全动态范围传染病检测和量化的平台技术。
- 批准号:
BB/W00335X/1 - 财政年份:2022
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Size Matters: A systems approach to understanding cell size control in a developing multicellular tissue
尺寸很重要:一种了解发育中多细胞组织中细胞尺寸控制的系统方法
- 批准号:
BB/S003584/1 - 财政年份:2019
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Inferring trace element inputs to North Pacific surface waters from Alaskan and Asian dust
推断阿拉斯加和亚洲尘埃对北太平洋地表水的微量元素输入
- 批准号:
1756126 - 财政年份:2018
- 资助金额:
$ 85.84万 - 项目类别:
Standard Grant
Role of Atypical D1 Proteins in Photosystem II
非典型 D1 蛋白在光系统 II 中的作用
- 批准号:
BB/P00931X/1 - 财政年份:2017
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Novel strategies for single step molecular diagnostics assays with full dynamic range quantitation
具有全动态范围定量的单步分子诊断测定的新策略
- 批准号:
BB/L022346/1 - 财政年份:2014
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Dynamics of global chromatin landscape through the cell cycle and differentiation
通过细胞周期和分化的整体染色质景观的动态
- 批准号:
BB/L009358/1 - 财政年份:2014
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
iSAM: Integrative Systems Analysis of the Shoot Apical Meristem
iSAM:芽顶端分生组织的综合系统分析
- 批准号:
BB/I004661/1 - 财政年份:2010
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Novel anti-malarial compounds and assay targeting chloroquine resistance
新型抗疟化合物和针对氯喹耐药性的测定
- 批准号:
BB/F528114/2 - 财政年份:2009
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
Role of cyclin-dependent kinase inhibitors (KRPs) in root meristem activation
细胞周期蛋白依赖性激酶抑制剂(KRP)在根分生组织激活中的作用
- 批准号:
BB/G00482X/1 - 财政年份:2009
- 资助金额:
$ 85.84万 - 项目类别:
Research Grant
相似国自然基金
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
- 批准号:82372306
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
- 批准号:82370678
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
cGAS-STING通路调控单核细胞活化参与Graves病发病的机制研究
- 批准号:82370787
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
乳杆菌代谢物PolyP通过LuxS/AI-2途径调控菌斑生物膜介导的矿化失衡机制研究
- 批准号:82370941
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
- 批准号:
10991546 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
DNA repair pathway coordination during damage processing
损伤处理过程中 DNA 修复途径的协调
- 批准号:
10748479 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Glut1+ cancer associated fibroblasts enforce a metabolic barrier to tumor T cell infiltration
Glut1癌症相关成纤维细胞增强了肿瘤T细胞浸润的代谢屏障
- 批准号:
10752508 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别:
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 85.84万 - 项目类别: