Elucidating the mechanism of endocytic invagination and scission
阐明内吞内陷和分裂的机制
基本信息
- 批准号:BB/K002511/1
- 负责人:
- 金额:$ 87.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cells are the basic unit of life and all organisms are composed of one or more cells. Cells need to interact with their environment to ensure that they respond correctly to signals that come from their surroundings. The majority of this interaction takes place through the proteins that lie on its surface. Endocytosis is an essential process in most eukaryotic cells. It involves a small amount of the outer (plasma) membrane of the cell being pulled inwards into the cell until some of this membrane pinches off to form a little sphere called a vesicle. This vesicle will contain fluid from outside the cell and, within its membrane it will contain proteins that were on the surface. A cell may want to remove these proteins from the surface because they are damaged, or because they can bind or respond to signals from outside that the cell no longer wants, or needs to respond to. Endocytosis is a very important way for a cell to control what is on its surface. Some pathogens or toxins can bind to proteins on the cell surface and trigger endocytosis. In this way these inappropriate substances can gain entry to the cell. Defects in the endocytic process have also been detected early in some neurological disorders such as Alzheimers. Research in the Ayscough laboratory uses a simple one-celled organism Saccharomyces cerevisiae (bakers yeast) as a model system. Many processes are known to happen in the same way in this cell-type and in cells of more complex organisms such as mammals. We are particularly interested in the interplay between three types of protein that we, and others, have shown are critical in the inward movement of the membrane and its pinching off (scission) to form a vesicle. These proteins are called, dynamins, amphiphysins and actin. They are proposed to be involved in endocytosis but the exact step at which they function has been difficult to elucidate. One reason for this, is that much work on the relevant mammalian proteins has been performed only with purified proteins. It is not always easy to then translate this data into a physiological context. Manipulating the various mammalian systems has not always been straightforward and some experiments can take months to perform. Yeast provides a more simple situation to investigate, and we can study things within the context of the whole organism. We use imaging of fluorescently tagged proteins to investigate how the proteins of interest move in the cell. We can determine when the proteins localise to sites of endocytosis and how long they stay there. This imaging needs to be very sensitive as the endocytic sites are only fractions of a micron in size. Furthermore, the actual membrane invagination and scission events occur on a seconds timescale. Using yeast we can readily investigate the effect of changing just single amino acids within the dynamin or amphiphysin proteins. As well as using live cell imaging we are trying to generate synthetic systems, using pure proteins to reproduce the events that we have studied in the cells. Understanding how to manipulate membranes might be important in the future to generate functioning synthetic cells. Our approach will give new insights into how the proteins work at the molecular level. In turn, this will inform approaches in other, more complex systems studying these proteins in the context of both healthy and diseased cell types.
细胞是生命的基本单位,所有生物体都是由一个或多个细胞组成的。细胞需要与环境相互作用,以确保它们对来自周围环境的信号做出正确的反应。这种相互作用的大部分通过位于其表面的蛋白质发生。内吞作用是大多数真核细胞的重要过程。它涉及到细胞的少量外(质膜)被向内拉入细胞,直到一些膜被夹断,形成一个称为囊泡的小球。这个囊泡将包含来自细胞外的液体,在其膜内,它将包含表面上的蛋白质。细胞可能想要从表面去除这些蛋白质,因为它们被损坏,或者因为它们可以结合或响应细胞不再想要或需要响应的外部信号。内吞作用是细胞控制其表面物质的一种非常重要的方式。一些病原体或毒素可以与细胞表面的蛋白质结合并触发内吞作用。通过这种方式,这些不适当的物质可以进入细胞。内吞过程中的缺陷也在一些神经系统疾病如阿尔茨海默氏症中早期发现。Ayscough实验室的研究使用简单的单细胞生物酿酒酵母(面包酵母)作为模型系统。已知许多过程以相同的方式发生在这种细胞类型和更复杂的生物体(如哺乳动物)的细胞中。我们特别感兴趣的是三种类型的蛋白质之间的相互作用,我们和其他人已经证明,这三种蛋白质在膜的向内运动和它的夹断(切断)形成囊泡中是至关重要的。这些蛋白质被称为发动蛋白、两性蛋白和肌动蛋白。它们被认为参与内吞作用,但它们发挥作用的确切步骤一直难以阐明。其中一个原因是,有关哺乳动物蛋白质的许多工作仅用纯化的蛋白质进行。然后将这些数据转化为生理背景并不总是容易的。操纵各种哺乳动物系统并不总是那么简单,有些实验可能需要数月才能完成。酵母提供了一个更简单的研究环境,我们可以在整个有机体的背景下研究事物。我们使用荧光标记蛋白质的成像来研究感兴趣的蛋白质如何在细胞中移动。我们可以确定蛋白质何时定位于内吞作用的位点以及它们在那里停留多久。这种成像需要非常灵敏,因为内吞位点的尺寸只有几分之一微米。此外,实际的膜内陷和断裂事件发生在秒的时间尺度上。使用酵母,我们可以很容易地研究改变发动蛋白或两性蛋白质中的单个氨基酸的影响。除了使用活细胞成像,我们还试图产生合成系统,使用纯蛋白质来重现我们在细胞中研究的事件。了解如何操纵膜在未来产生功能性合成细胞可能很重要。我们的方法将为蛋白质如何在分子水平上工作提供新的见解。反过来,这将为在健康和患病细胞类型的背景下研究这些蛋白质的其他更复杂系统中的方法提供信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion.
- DOI:10.1038/ncomms2724
- 发表时间:2013
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
Insights into dynamin-associated disorders through analysis of equivalent mutations in the yeast dynamin Vps1.
- DOI:10.15698/mic2016.04.490
- 发表时间:2016-03-22
- 期刊:
- 影响因子:0
- 作者:Moustaq L;Smaczynska-de Rooij II;Palmer SE;Marklew CJ;Ayscough KR
- 通讯作者:Ayscough KR
An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited.
- DOI:10.1371/journal.pone.0103311
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Aghamohammadzadeh S;Smaczynska-de Rooij II;Ayscough KR
- 通讯作者:Ayscough KR
Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate.
- DOI:10.1093/hmg/ddx054
- 发表时间:2017-04-15
- 期刊:
- 影响因子:3.5
- 作者:Rzepnikowska W;Flis K;Kaminska J;Grynberg M;Urbanek A;Ayscough KR;Zoladek T
- 通讯作者:Zoladek T
Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses.
- DOI:10.1111/tra.12155
- 发表时间:2014-05
- 期刊:
- 影响因子:0
- 作者:Chapa-y-Lazo B;Allwood EG;Smaczynska-de Rooij II;Snape ML;Ayscough KR
- 通讯作者:Ayscough KR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Ayscough其他文献
Kathryn Ayscough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Ayscough', 18)}}的其他基金
Elucidating the molecular mechanism of Arp2/3-independent actin nucleation by WASP family proteins
阐明 WASP 家族蛋白独立于 Arp2/3 的肌动蛋白成核的分子机制
- 批准号:
BB/N007581/1 - 财政年份:2016
- 资助金额:
$ 87.87万 - 项目类别:
Research Grant
Defining factors that ensure unidirectionality of endocytosis
确保胞吞作用单向性的定义因素
- 批准号:
BB/J017094/1 - 财政年份:2012
- 资助金额:
$ 87.87万 - 项目类别:
Research Grant
Endocytic invagination and vesicle scission - interplay between dynamin homologues and amphiphysins in budding yeast
内吞内陷和囊泡分裂——芽殖酵母中动力同系物和两性蛋白之间的相互作用
- 批准号:
BB/G011001/1 - 财政年份:2009
- 资助金额:
$ 87.87万 - 项目类别:
Research Grant
The role of actin in cell homeostasis
肌动蛋白在细胞稳态中的作用
- 批准号:
G0601600/1 - 财政年份:2007
- 资助金额:
$ 87.87万 - 项目类别:
Fellowship
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
- 批准号:82371634
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
- 批准号:82371028
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
- 批准号:82370889
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
- 批准号:82371103
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
- 批准号:82371799
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
ESCRT-dependent novel regulatory mechanism of EMT and tumorigenesis in oral cancer
口腔癌 EMT 和肿瘤发生的 ESCRT 依赖性新调控机制
- 批准号:
10391608 - 财政年份:2022
- 资助金额:
$ 87.87万 - 项目类别:
Mechanism of botulinum neurotoxin transport across membranes
肉毒杆菌神经毒素跨膜转运机制
- 批准号:
10407056 - 财政年份:2019
- 资助金额:
$ 87.87万 - 项目类别:
Mechanism of botulinum neurotoxin transport across membranes
肉毒杆菌神经毒素跨膜转运机制
- 批准号:
10162495 - 财政年份:2019
- 资助金额:
$ 87.87万 - 项目类别:
Mechanism of botulinum neurotoxin transport across membranes
肉毒杆菌神经毒素跨膜转运机制
- 批准号:
10627926 - 财政年份:2019
- 资助金额:
$ 87.87万 - 项目类别:
Mechanism of botulinum neurotoxin transport across membranes
肉毒杆菌神经毒素跨膜转运机制
- 批准号:
9796322 - 财政年份:2019
- 资助金额:
$ 87.87万 - 项目类别:
Exploring microvesicular transport across the blood-brain barrier as a novel a-synuclein clearance mechanism and source of Parkinson's disease biomarkers
探索微泡穿越血脑屏障的运输作为一种新型的α-突触核蛋白清除机制和帕金森病生物标志物的来源
- 批准号:
9751979 - 财政年份:2018
- 资助金额:
$ 87.87万 - 项目类别:
A novel ESCRT-associated regulatory mechanism of EMT in oral cancer
口腔癌中 EMT 的新型 ESCRT 相关调节机制
- 批准号:
9333643 - 财政年份:2017
- 资助金额:
$ 87.87万 - 项目类别:
New mechanism of commensal bacteria interaction with host immunity
共生菌与宿主免疫相互作用的新机制
- 批准号:
9317868 - 财政年份:2017
- 资助金额:
$ 87.87万 - 项目类别:
Mechanism of LDL Receptor Degradation by PCSK9
PCSK9 降解 LDL 受体的机制
- 批准号:
304572 - 财政年份:2014
- 资助金额:
$ 87.87万 - 项目类别:
Operating Grants
COPI interactions mediate toxin entry: a common shared mechanism of translocation
COPI 相互作用介导毒素进入:一种常见的易位共享机制
- 批准号:
8375448 - 财政年份:2012
- 资助金额:
$ 87.87万 - 项目类别: