Defining the post-transcriptional regulatory mechanisms controlling the SOX9 gene and their potential for promoting cartilage regeneration

定义控制 SOX9 基因的转录后调控机制及其促进软骨再生的潜力

基本信息

  • 批准号:
    BB/K00381X/1
  • 负责人:
  • 金额:
    $ 43.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Articular cartilage is a tissue in our joints that allows easy articulation and provides "shock absorbing" properties. Following injury or disease it heals very poorly. The tissue is typically described as having one type of cell in it, called a chondrocyte and it is very important that this cell type retains its ability to effectively produce the correct type of connective tissue and allow cartilage to perform its function properly. A very important gene, called SOX9, is used by chondrocytes to orchestrate the correct production of cartilage tissue and it is absolutely essential to the formation of healthy cartilage. Regulation of SOX9 has been implicated in age-related diseases such as osteoarthritis and its use in gene therapy approaches is able to promote the engineering of cartilage tissue. The ability to promote the activity of the SOX9 gene in chondrocytes is thus desirable but its regulation by these cells is still not fully understood. The applicant has been able to demonstrate that a regulatory process that controls the decay of an important gene intermediate, called mRNA, can affect the activity of the SOX9 gene. This project takes the work forward by examining the molecular mechanisms behind this process and use the findings to improve the quality of engineered cartilage.This project will firstly build upon preliminary data, which shows that a group of specialised regulatory proteins, which can interact with mRNA and alter its decay rate, inhibit the activity of the SOX9 gene. Using a cell culture system, these proteins will be inhibited and the effect this has on SOX9 gene function will be measured. The effect of inhibiting these proteins will then be combined with the manipulation of other DNA-like molecules called microRNAs that exist in chondrocytes. Overall, the first objective will define combination of proteins and microRNAs, which potently affect the activity of the SOX9 gene. The second objective of the project is to determine what parts of the SOX9 gene make it a target for mRNA decay. By introducing a molecular "reporter" into chondrocytes, the contribution of different regions of the gene to this decay will be assessed. This work will seek to determine whether certain regulatory parts of the SOX9 gene are responsible for the general instability of the mRNA whilst others allow changes to be made to the rate of decay in response to environmental cues. Further experiments will then be conducted to examine how these parts of the SOX9 gene interact with the specialised mRNA interacting proteins examined during the first objective. The first two objectives of the project examine the basic biological mechanisms, which control an important aspect of SOX9 gene regulation. These are valuable experiments, which will provide an understanding of the control of an essential cartilage gene and of how its altered activity may contribute to the development of musculoskeletal diseases in the aged. The final aim of the project is to take these findings and use them to increase SOX9 gene activity, by reducing mRNA decay through the manipulation of relevant mRNA interacting proteins and microRNAs in human adult stem cells. The effect of these interventions on the quality and quantity of cartilage tissue produced by the stem cells will then be assessed.To conclude, the outcomes of the project will be the identification of factors which regulate the SOX9 gene, the definition of the characteristics of the gene that make it susceptible to this regulation and the evaluation of the potential of these findings to improve our ability to engineer cartilage tissue. In delivering these outcomes the project aims to better understand the fundamental regulation of a critical cartilage gene, which will impact on how we understand age-related tissue pathology and improve tissue regeneration techniques.
关节软骨是我们关节中的一种组织,可以轻松连接并提供“减震”特性。在受伤或生病后,它愈合得很差。该组织通常被描述为具有一种类型的细胞,称为软骨细胞,并且这种细胞类型保持其有效产生正确类型的结缔组织的能力并允许软骨正确地执行其功能是非常重要的。一个非常重要的基因,称为SOX 9,被软骨细胞用来协调软骨组织的正确生产,它对健康软骨的形成至关重要。SOX 9的调节与骨关节炎等年龄相关疾病有关,其在基因治疗方法中的应用能够促进软骨组织的工程化。因此,促进软骨细胞中SOX 9基因活性的能力是期望的,但这些细胞对其的调节仍然没有完全理解。申请人已经能够证明,控制重要基因中间体(称为mRNA)衰变的调控过程可以影响SOX 9基因的活性。该项目将通过研究这一过程背后的分子机制来推进这项工作,并利用这些发现来改善工程软骨的质量。该项目将首先建立在初步数据的基础上,这些数据表明一组专门的调节蛋白可以与mRNA相互作用并改变其衰减速率,抑制SOX 9基因的活性。使用细胞培养系统,这些蛋白质将被抑制,并将测量其对SOX 9基因功能的影响。然后,抑制这些蛋白质的作用将与操纵软骨细胞中存在的称为microRNA的其他DNA样分子相结合。总的来说,第一个目标将定义蛋白质和microRNA的组合,这可能会影响SOX 9基因的活性。该项目的第二个目标是确定SOX 9基因的哪些部分使其成为mRNA衰变的靶点。通过将分子“报告”引入软骨细胞,将评估基因的不同区域对这种衰变的贡献。这项工作将试图确定SOX 9基因的某些调控部分是否负责mRNA的一般不稳定性,而其他部分则允许响应环境线索而改变衰变速率。然后将进行进一步的实验,以检查SOX 9基因的这些部分如何与第一个目标期间检查的专门mRNA相互作用蛋白相互作用。该项目的前两个目标是研究控制SOX 9基因调控的一个重要方面的基本生物学机制。这些都是有价值的实验,这将提供一个基本的软骨基因的控制和它的活动如何改变可能有助于在老年人的肌肉骨骼疾病的发展的理解。该项目的最终目的是利用这些发现并利用它们来增加SOX 9基因的活性,通过操纵人类成体干细胞中相关的mRNA相互作用蛋白和microRNA来减少mRNA的衰减。这些干预措施对干细胞产生的软骨组织的质量和数量的影响将被评估。总而言之,该项目的成果将是鉴定调节SOX 9基因的因素,定义使其易于受到这种调节的基因的特征,并评估这些发现对提高我们工程软骨组织能力的潜力。在提供这些成果的过程中,该项目旨在更好地了解关键软骨基因的基本调控,这将影响我们如何理解与年龄相关的组织病理学并改善组织再生技术。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LONGITUDINAL ANALYSIS OF PRIMARY HUMAN ARTICULAR CHONDROCYTE TRANSCRIPTOMIC REGULATION BY INTERLEUKIN 1ß UNDER HYPEROSMOTIC CONDITIONS
高渗条件下白介素 1 对原代人类关节软骨细胞转录调控的纵向分析
Investigating the post-transcriptional regulatory mechanisms controlling SOX9 in chondrocytes
研究软骨细胞中控制 SOX9 的转录后调控机制
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin McDermott (Co-Author)
  • 通讯作者:
    Benjamin McDermott (Co-Author)
MAPPING NOVEL PROTEIN INTERACTIONS IN THE 3'UTR OF THE MASTER CHONDROCYTE REGULATORY FACTOR SOX9
绘制主软骨细胞调节因子 SOX9 3UTR 中的新型蛋白质相互作用图谱
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Tew其他文献

Simon Tew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Tew', 18)}}的其他基金

Investigating the role of the RNA binding protein HuR in musculoskeletal development and disease
研究 RNA 结合蛋白 HuR 在肌肉骨骼发育和疾病中的作用
  • 批准号:
    MR/N011333/1
  • 财政年份:
    2016
  • 资助金额:
    $ 43.05万
  • 项目类别:
    Research Grant

相似国自然基金

基于可见光环化反应的Post-Iboga类吲哚生物碱不对称集群合成
  • 批准号:
    22361048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
  • 批准号:
    82372202
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
  • 批准号:
    82371738
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
  • 批准号:
    32000529
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
  • 批准号:
    31970707
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
含21微米和30微米辐射特征的星周包层中的气态分子
  • 批准号:
    11973099
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
缺氧通过eIF4E2/GSK3β信号通路调控细胞衰老的作用及机制
  • 批准号:
    31970682
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
蛋白质激酶MAPK7参与纤毛组装的功能和分子机理
  • 批准号:
    31972888
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
辅酶A类代谢中间产物参与组蛋白表观遗传修饰调控肝细胞代谢网络对高油脂营养应答的机制研究
  • 批准号:
    91957110
  • 批准年份:
    2019
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Defining post-transcriptional gene regulation in FMRP-deficiency usingmiRNA:target chimeras
使用 miRNA:目标嵌合体定义 FMRP 缺陷的转录后基因调控
  • 批准号:
    10586591
  • 财政年份:
    2023
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining the cell type-specific role of miR-9-2 in telencephalon development
定义 miR-9-2 在端脑发育中的细胞类型特异性作用
  • 批准号:
    10507246
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
  • 批准号:
    10549721
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining and targeting substrate specificity of protein tyrosine phosphatases
蛋白质酪氨酸磷酸酶的底物特异性的定义和靶向
  • 批准号:
    10341499
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining Novel Roles of Ubiquitin Accumulation During the Mammalian Oxidative Stress Response
定义哺乳动物氧化应激反应中泛素积累的新作用
  • 批准号:
    10629240
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining the cell type-specific role of miR-9-2 in telencephalon development
定义 miR-9-2 在端脑发育中的细胞类型特异性作用
  • 批准号:
    10747572
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining the cell type-specific role of miR-9-2 in telencephalon development
定义 miR-9-2 在端脑发育中的细胞类型特异性作用
  • 批准号:
    10738265
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining how the DNA- and RNA-binding protein SFPQ represses Epstein-Barr Virus lytic reactivation
定义 DNA 和 RNA 结合蛋白 SFPQ 如何抑制 Epstein-Barr 病毒裂解再激活
  • 批准号:
    10537257
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
DEFINING THE ROLE OF RNA SEQUESTRATION IN MAMMALIAN CELL FATE
定义 RNA 隔离在哺乳动物细胞命运中的作用
  • 批准号:
    10686100
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
Defining and targeting substrate specificity of protein tyrosine phosphatases
蛋白质酪氨酸磷酸酶的底物特异性的定义和靶向
  • 批准号:
    10538607
  • 财政年份:
    2022
  • 资助金额:
    $ 43.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了