Mechanisms Regulating Genome Replication

调节基因组复制的机制

基本信息

  • 批准号:
    BB/K007211/2
  • 负责人:
  • 金额:
    $ 29.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

All cells contain a complete copy of the organism's DNA, the genetic blueprint of life, packaged into discrete units called chromosomes. Since new cells need a copy of the genetic material, the chromosomes must be completely and accurately replicated before the cell can divide. Eukaryotes, such as yeast and people, have large genomes with millions of bases encoding the genetic information. To ensure complete replication of these genomes within the allowed time, the process of DNA replication starts at multiple sites along each chromosome, called replication origins. These replication origins are specialised DNA sequences that assemble the cellular machinery that then moves along the DNA, reading and copying the genetic material. It is essential that the cell activates sufficient replication origins to ensure complete replication of the chromosomes. The importance of controlling replication origin activation is highlighted by the genome instability and diseases that may result from uncontrolled chromosome replication. Despite the importance of DNA replication origins we understand little about the DNA sequences that specify and control them. Failures in the processes of DNA replication lead to genetic instability and diseases such as cancer and congenital disorders. In the future, a better understanding of the basic biology that ensures genetic integrity will give new insights that will allow improved diagnosis and treatment of these diseases.We aim to understand how replication origin activation time is controlled. To study this process we have compared genome replication in different organisms. Primarily we work with baker's yeast, since this is safe, cheap and ethical, but most importantly all the steps of genome replication are similar between baker's yeast and people. Therefore advances we make working with yeasts will be informative for future studies and treatment of people. Recently we have found that the patterns of genome replication are very similar in different yeast species (in evolutionary terms equivalent to comparing people with birds). These comparisons allowed us to discover individual replication origins that show dramatic differences in activity between the yeast species. Now we will investigate what is responsible for this difference in origin activation time between the two species. Our experiments suggest that DNA 'regulatory' sequences close to the origin are responsible. Now we want to find these sequences and determine how they alter the activation time of the replication origin.The similarities between genome replication in yeast and people mean that the discovery of these regulatory sequences in yeast may be informative about how replication origin activation time is regulated in people. If too few replication origins activate, parts of the genome will fail to replicate and this can result in cancer and developmental diseases. Therefore, in the future, a better understanding of how replication origin activation time is regulated may allow the development of improved treatments for these diseases.
所有细胞都含有生物体DNA的完整副本,这是生命的基因蓝图,被包装成称为染色体的离散单元。因为新的细胞需要遗传物质的副本,所以在细胞分裂之前,染色体必须完全和准确地复制。真核生物,如酵母和人类,拥有巨大的基因组,有数百万个碱基编码遗传信息。为了确保在允许的时间内完成这些基因组的复制,DNA复制过程从每条染色体上的多个位置开始,称为复制起点。这些复制起始点是专门的DNA序列,它们组装细胞机器,然后细胞机器沿着DNA移动,读取和复制遗传物质。细胞激活足够的复制起点以确保染色体的完全复制是至关重要的。基因组的不稳定性和不受控制的染色体复制可能导致的疾病,突显了控制复制起点激活的重要性。尽管DNA复制起始点很重要,但我们对指定和控制它们的DNA序列知之甚少。DNA复制过程中的失败会导致遗传不稳定以及癌症和先天性疾病等疾病。在未来,更好地了解确保遗传完整性的基本生物学将提供新的见解,从而能够改进这些疾病的诊断和治疗。我们的目标是了解复制起点激活时间是如何控制的。为了研究这一过程,我们比较了不同生物体的基因组复制。我们主要使用面包酵母,因为这是安全、廉价和合乎道德的,但最重要的是,面包酵母和人类基因组复制的所有步骤都是相似的。因此,我们在酵母菌方面取得的进展将为未来的研究和人类治疗提供信息。最近,我们发现不同酵母物种的基因组复制模式非常相似(在进化方面,相当于将人与鸟进行比较)。这些比较使我们能够发现各个复制来源,显示出酵母物种之间活性的巨大差异。现在我们将调查是什么导致了这两个物种之间起源激活时间的差异。我们的实验表明,接近起始点的DNA“调控”序列是原因。现在我们想要找到这些序列,并确定它们是如何改变复制起始激活时间的。酵母基因组复制与人类基因组复制的相似性意味着,在酵母中发现这些调控序列可能有助于了解复制起始激活时间在人类中是如何调节的。如果激活的复制起点太少,部分基因组将无法复制,这可能导致癌症和发育疾病。因此,在未来,更好地了解复制起始激活时间是如何调节的,可能有助于开发针对这些疾病的改进治疗方法。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The dynamics of genome replication using deep sequencing.
  • DOI:
    10.1093/nar/gkt878
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Müller CA;Hawkins M;Retkute R;Malla S;Wilson R;Blythe MJ;Nakato R;Komata M;Shirahige K;de Moura AP;Nieduszynski CA
  • 通讯作者:
    Nieduszynski CA
DNA replication timing influences gene expression level.
  • DOI:
    10.1083/jcb.201701061
  • 发表时间:
    2017-07-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Müller CA;Nieduszynski CA
  • 通讯作者:
    Nieduszynski CA
Evolution of Genome Architecture in Archaea: Spontaneous Generation of a New Chromosome in Haloferax volcanii.
  • DOI:
    10.1093/molbev/msy075
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Ausiannikava D;Mitchell L;Marriott H;Smith V;Hawkins M;Makarova KS;Koonin EV;Nieduszynski CA;Allers T
  • 通讯作者:
    Allers T
A global profile of replicative polymerase usage.
  • DOI:
    10.1038/nsmb.2962
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Daigaku Y;Keszthelyi A;Müller CA;Miyabe I;Brooks T;Retkute R;Hubank M;Nieduszynski CA;Carr AM
  • 通讯作者:
    Carr AM
Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres.
  • DOI:
    10.1016/j.cub.2015.06.023
  • 发表时间:
    2015-08-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kobayashi N;Suzuki Y;Schoenfeld LW;Müller CA;Nieduszynski C;Wolfe KH;Tanaka TU
  • 通讯作者:
    Tanaka TU
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Conrad Nieduszynski其他文献

Conrad Nieduszynski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Conrad Nieduszynski', 18)}}的其他基金

Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
  • 批准号:
    BB/Y00549X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
Single molecule detection of DNA replication errors
DNA复制错误的单分子检测
  • 批准号:
    BB/W006014/1
  • 财政年份:
    2022
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
Role of Senataxins in resolving transcription-replication conflicts
Senataxins 在解决转录复制冲突中的作用
  • 批准号:
    BB/W01520X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
Single molecule analysis of genome replication
基因组复制的单分子分析
  • 批准号:
    BB/N016858/1
  • 财政年份:
    2016
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
Mechanisms Regulating Genome Replication
调节基因组复制的机制
  • 批准号:
    BB/K007211/1
  • 财政年份:
    2013
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
Stochastic modelling chromosome replication
随机建模染色体复制
  • 批准号:
    BB/G001596/1
  • 财政年份:
    2009
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Research Grant
What regulates replication origin activation?
什么调节复制起点的激活?
  • 批准号:
    BB/E023754/1
  • 财政年份:
    2008
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Fellowship

相似国自然基金

Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Genome-wide screening for host lncRNAs regulating host defense against Mycobacterial infection in macrophages
全基因组筛选调节宿主防御巨噬细胞分枝杆菌感染的宿主lncRNA
  • 批准号:
    10633283
  • 财政年份:
    2022
  • 资助金额:
    $ 29.43万
  • 项目类别:
Genome-wide screening for host lncRNAs regulating host defense against Mycobacterial infection in macrophages
全基因组筛选调节宿主防御巨噬细胞分枝杆菌感染的宿主lncRNA
  • 批准号:
    10526531
  • 财政年份:
    2022
  • 资助金额:
    $ 29.43万
  • 项目类别:
Exploring a Functional Role of Chromosome Loop Extrusion Direction on Regulating Genome Biology
探索染色体环挤出方向在调节基因组生物学中的功能作用
  • 批准号:
    10606672
  • 财政年份:
    2022
  • 资助金额:
    $ 29.43万
  • 项目类别:
Understanding the mechanistic role of genome stability pathways in regulating cell homeostasis
了解基因组稳定性途径在调节细胞稳态中的机制作用
  • 批准号:
    10393487
  • 财政年份:
    2021
  • 资助金额:
    $ 29.43万
  • 项目类别:
Understanding the mechanistic role of genome stability pathways in regulating cell homeostasis
了解基因组稳定性途径在调节细胞稳态中的机制作用
  • 批准号:
    10574614
  • 财政年份:
    2021
  • 资助金额:
    $ 29.43万
  • 项目类别:
Identification of factors regulating a novel pathway in the mammalian Golgi stress response using genome-wide CRISPR screening
使用全基因组 CRISPR 筛选鉴定调节哺乳动物高尔基体应激反应新途径的因子
  • 批准号:
    19K16131
  • 财政年份:
    2019
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of genes regulating brain gray matter atrophy in Japanese multiple sclerosis by genome-wide association study
通过全基因组关联研究鉴定调节日本多发性硬化症脑灰质萎缩的基因
  • 批准号:
    19K21317
  • 财政年份:
    2018
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
RII Track-2 FEC: Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments (BuG ReMeDEE)
RII Track-2 FEC:构建基因组到现象组基础设施以调节深层和极端环境中的甲烷 (BuG ReMeDEE)
  • 批准号:
    1736255
  • 财政年份:
    2017
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Cooperative Agreement
REGULATING GENOME FIDELITY AND CANCER PROGRESSION
调节基因组保真度和癌症进展
  • 批准号:
    8637495
  • 财政年份:
    2014
  • 资助金额:
    $ 29.43万
  • 项目类别:
Screening of factors regulating refractory leukemia using genome editting
利用基因组编辑筛选难治性白血病调节因素
  • 批准号:
    26670464
  • 财政年份:
    2014
  • 资助金额:
    $ 29.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了