What regulates replication origin activation?
什么调节复制起点的激活?
基本信息
- 批准号:BB/E023754/1
- 负责人:
- 金额:$ 117.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All cells contain a complete copy of the organism's DNA, the genetic blue print of life, packaged into discrete units called chromosomes. Since new cells need a copy of the genetic material, the chromosomes must be completely and accurately replicated before the cell can divide. Eukaryotes, such as yeast and humans, have large genomes with millions of bases encoding the genetic information. To ensure complete replication of these genomes within the allowed time, the process of DNA replication starts at multiple sites along each chromosome, called replication origins. These replication origins are specialised DNA sequences that assemble the cellular machinery that then moves along the DNA reading and copying the genetic material. It is essential that the cell activates sufficient replication origins to ensure complete replication of the chromosomes. The importance of controlling replication origin activation is highlighted by the genome instability that may result from uncontrolled chromosome replication. Despite the importance of DNA replication origins we understand little about the DNA sequences that specify and control them. Failures in the processes of DNA replication lead to genetic instability and diseases such as cancer and congenital disorders. I hope that a better understanding of the basic biology that ensures genetic integrity will give new insights that will allow improved diagnosis and treatment of these diseases. In addition to DNA replication, the genetic material is also read and then translated to make proteins. The initial step in this process is called transcription. I have recently found that transcription is detrimental to replication origin function and may therefore play a key role in determining which DNA sequences can function as origins. This project aims to understand how the cell coordinates the two key processes that read the genetic information, DNA replication and DNA transcription, to ensure genomic stability. I will work with budding and fission yeasts, because their genomes are well understood and easily modified to ask experimental questions, and importantly the controls over DNA replication are similar to those in human cells. Furthermore, I have already precisely identified the location of more than half of the budding yeast replication origins providing a large dataset to help me understand the properties of replication origins. By collaborating with leading fission yeast laboratories I will identify the location of replication origins in this species. This will allow, for the first time, genome-wide comparisons of replication origin characteristics between two organisms to determine which properties are shared and therefore likely to be of functional importance. I will go on to look directly at how replication is affected by transcription and what molecular mechanisms are used by the cell to protect replication, and specifically replication origins, from transcription. These experiments will not only allow me to understand how the cell coordinates replication and transcription, but will also give an understanding of what determines replication origin behaviour at the molecular level. Using these results, I will build a computer-based model of the processes of chromosome replication and test the model by comparing the computer predictions with experimental results. Differences between prediction and observation will highlight the limitations in our understanding of DNA replication, indicating important directions for further experiments. This work will uncover how DNA replication origins are specified and how their behaviour is regulated. By understanding, at the molecular level, the processes that control replication origins throughout the genome I will be able to model how whole chromosomes are replicated. This model will allow me to predict weaknesses in the chromosome replication process that may underlie genetic diseases such as cancer.
所有细胞都含有生物体DNA的完整副本,这是生命的遗传蓝图,被包装成称为染色体的离散单元。因为新的细胞需要遗传物质的副本,所以在细胞分裂之前,染色体必须完全和准确地复制。真核生物,如酵母和人类,拥有巨大的基因组,有数百万个碱基编码遗传信息。为了确保在允许的时间内完成这些基因组的复制,DNA复制过程从每条染色体上的多个位置开始,称为复制起点。这些复制起始点是专门的DNA序列,它们组装细胞机器,然后细胞机器沿着DNA阅读和复制遗传物质。细胞激活足够的复制起点以确保染色体的完全复制是至关重要的。不受控制的染色体复制可能导致基因组不稳定,这突显了控制复制起点激活的重要性。尽管DNA复制起始点很重要,但我们对指定和控制它们的DNA序列知之甚少。DNA复制过程中的失败会导致遗传不稳定以及癌症和先天性疾病等疾病。我希望,对确保遗传完整性的基本生物学的更好理解将提供新的见解,从而改进这些疾病的诊断和治疗。除了DNA复制,遗传物质也会被读取,然后被翻译成蛋白质。这个过程的第一步被称为转录。我最近发现转录对复制起始点的功能是有害的,因此可能在决定哪些DNA序列可以作为起始点方面发挥关键作用。该项目旨在了解细胞如何协调读取遗传信息的两个关键过程,即DNA复制和DNA转录,以确保基因组的稳定性。我将使用萌芽和分裂酵母,因为它们的基因组很容易理解,很容易修改以提出实验问题,而且重要的是,对DNA复制的控制类似于人类细胞中的控制。此外,我已经准确地确定了超过一半的萌芽酵母复制起始点的位置,提供了一个大型数据集,帮助我了解复制起始点的属性。通过与领先的分裂酵母实验室合作,我将确定该物种中复制起点的位置。这将首次允许对两个生物体之间的复制起源特征进行全基因组范围的比较,以确定哪些特性是共同的,因此可能具有重要的功能。我将继续直接研究复制是如何受到转录的影响的,以及细胞使用哪些分子机制来保护复制,特别是复制起源,使其免受转录的影响。这些实验不仅让我了解细胞如何协调复制和转录,而且还将在分子水平上理解是什么决定了复制起源的行为。利用这些结果,我将建立一个基于计算机的染色体复制过程模型,并通过将计算机预测与实验结果进行比较来测试该模型。预测和观测之间的差异将突出我们对DNA复制的理解的局限性,为进一步的实验指明重要的方向。这项工作将揭示DNA复制起点是如何指定的,以及它们的行为是如何受到监管的。通过在分子水平上了解控制整个基因组中复制起点的过程,我将能够模拟整个染色体是如何复制的。这个模型将使我能够预测染色体复制过程中的弱点,这些弱点可能是癌症等遗传性疾病的基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome.
- DOI:10.1186/1471-2164-14-69
- 发表时间:2013-01-31
- 期刊:
- 影响因子:4.4
- 作者:Liti G;Nguyen Ba AN;Blythe M;Müller CA;Bergström A;Cubillos FA;Dafhnis-Calas F;Khoshraftar S;Malla S;Mehta N;Siow CC;Warringer J;Moses AM;Louis EJ;Nieduszynski CA
- 通讯作者:Nieduszynski CA
The dynamics of genome replication using deep sequencing.
- DOI:10.1093/nar/gkt878
- 发表时间:2014-01
- 期刊:
- 影响因子:14.9
- 作者:Müller CA;Hawkins M;Retkute R;Malla S;Wilson R;Blythe MJ;Nakato R;Komata M;Shirahige K;de Moura AP;Nieduszynski CA
- 通讯作者:Nieduszynski CA
A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
- DOI:10.1371/journal.pgen.1003798
- 发表时间:2013
- 期刊:
- 影响因子:4.5
- 作者:Hoggard T;Shor E;Müller CA;Nieduszynski CA;Fox CA
- 通讯作者:Fox CA
High-resolution replication profiles define the stochastic nature of genome replication initiation and termination.
- DOI:10.1016/j.celrep.2013.10.014
- 发表时间:2013-11-27
- 期刊:
- 影响因子:8.8
- 作者:Hawkins M;Retkute R;Müller CA;Saner N;Tanaka TU;de Moura AP;Nieduszynski CA
- 通讯作者:Nieduszynski CA
Conservation of replication timing reveals global and local regulation of replication origin activity.
- DOI:10.1101/gr.139477.112
- 发表时间:2012-10
- 期刊:
- 影响因子:7
- 作者:Müller CA;Nieduszynski CA
- 通讯作者:Nieduszynski CA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conrad Nieduszynski其他文献
Conrad Nieduszynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conrad Nieduszynski', 18)}}的其他基金
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Single molecule detection of DNA replication errors
DNA复制错误的单分子检测
- 批准号:
BB/W006014/1 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Role of Senataxins in resolving transcription-replication conflicts
Senataxins 在解决转录复制冲突中的作用
- 批准号:
BB/W01520X/1 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Single molecule analysis of genome replication
基因组复制的单分子分析
- 批准号:
BB/N016858/1 - 财政年份:2016
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Mechanisms Regulating Genome Replication
调节基因组复制的机制
- 批准号:
BB/K007211/2 - 财政年份:2014
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Mechanisms Regulating Genome Replication
调节基因组复制的机制
- 批准号:
BB/K007211/1 - 财政年份:2013
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Stochastic modelling chromosome replication
随机建模染色体复制
- 批准号:
BB/G001596/1 - 财政年份:2009
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
相似海外基金
53BP1 regulates genome biology and cellular physiology through liquid phase separation
53BP1 通过液相分离调节基因组生物学和细胞生理学
- 批准号:
10563657 - 财政年份:2023
- 资助金额:
$ 117.39万 - 项目类别:
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10684693 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
A Sphingomyelin Hydrolase Regulates the Late Stages of HIV Assembly and Budding
鞘磷脂水解酶调节 HIV 组装和出芽的后期阶段
- 批准号:
10548445 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10536876 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
A Sphingomyelin Hydrolase Regulates the Late Stages of HIV Assembly and Budding
鞘磷脂水解酶调节 HIV 组装和出芽的后期阶段
- 批准号:
10665753 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
- 批准号:
10322026 - 财政年份:2021
- 资助金额:
$ 117.39万 - 项目类别:
Determining how a Werner helicase (WRN) tumor suppressor complex regulates the human papillomavirus 16 life cycle
确定维尔纳解旋酶 (WRN) 肿瘤抑制复合物如何调节人乳头瘤病毒 16 生命周期
- 批准号:
10615229 - 财政年份:2021
- 资助金额:
$ 117.39万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10371165 - 财政年份:2021
- 资助金额:
$ 117.39万 - 项目类别:
Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast
自发复制叉崩溃调节野生型酵母的端粒长度稳态
- 批准号:
10549328 - 财政年份:2021
- 资助金额:
$ 117.39万 - 项目类别:
Determining how a Werner helicase (WRN) tumor suppressor complex regulates the human papillomavirus 16 life cycle
确定维尔纳解旋酶 (WRN) 肿瘤抑制复合物如何调节人乳头瘤病毒 16 生命周期
- 批准号:
10408136 - 财政年份:2021
- 资助金额:
$ 117.39万 - 项目类别: