Understanding the regulation of alkaloid biosynthesis in opium poppy and breeding new varieties

认识罂粟生物碱生物合成调控及新品种选育

基本信息

  • 批准号:
    BB/K018809/1
  • 负责人:
  • 金额:
    $ 153.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Plants have evolved to produce a vast array of complex chemical structures to fight off attacks from herbivores and pathogens and to protect themselves from often hostile environments. These chemical structures also provide plants with medicinal properties that human civilisation has relied on for millennia. Opium poppy is one of the most important medicinal plants in the world and represents the largest single source of natural products used by the pharmaceutical industry. Opium poppies produce opiate alkaloids such as morphine and codeine, which are one of the main classes of painkiller drugs. The chemical structures of these opiate alkaloids are very complex and plants remain the best factory for their production. Opium poppy also produces hundreds of other alkaloids and these have been a source of several other drugs. Opium poppy is commercially grown using broad acre farming methods and the crop is harvested mechanically and shipped to factories for extraction of the high value chemicals. Pharmaceutical companies such as GlaxoSmithKline and Johnson & Johnson have their own production systems for production of opiate alkaloids from opium poppy. Our group in the Centre for Novel Agricultural Products at the University of York have been working with GlaxoSmithKline to develop new varieties of poppy that produce more of the morphinan alkaloids such as morphine and codeine. We have also been investigating how opium poppy produces noscapine, an anti-tumour alkaloid that stops human cells dividing. Noscapine has been used as a human cough suppressant for decades. Its effectiveness in tackling various forms of cancer has been demonstrated more recently, and early stage clinical trials are in progress in the USA. We particularly wanted to discover how noscapine is made in opium poppy as this would help us to breed new varieties that make more of it and also to gain insight into related molecules that may also have useful pharmaceutical activity. Our work led to a major breakthrough that was published recently in the leading journal Science (Winzer et al, Science 2012, 336:1704-8). By comparing opium poppy varieties which make noscapine with those that do not we discovered that the pathway for synthesis of noscapine is controlled by a complex cluster of ten genes encoding five different enzyme classes. This is the most complex gene cluster ever found in plants and provides invaluable insights into the process of gene duplication and re-organisation driving cluster evolution.This proposal builds on our exciting breakthrough and aims to establish if the gene cluster is also present in other related species that also make noscapine. This will provide new insight into the mechanisms and processes involved in gene cluster evolution. Elucidating details of the biochemical pathway we discovered for noscapine biosynthesis will make us better able to design strategies for improved production of noscapine and related molecules. Noscapine is produced by a separate branch of the alkaloid biosynthesis pathway to the one used to produce morphine and codeine. What regulates the flow of molecules into these different branches is not understood and we now have the tools and knowledge to address this important question for the first time. Answering these questions not only adds to our knowledge of the most important medicinal plant in terms of natural product feedstock for the pharmaceutical industry, it also provides us with the knowledge platform and tools to develop new varieties of opium poppy that are optimised for production of alkaloids such as noscapine, morphine and codeine. The final objective of this proposal is to use molecular breeding methods to develop new varieties of opium poppy with optimised levels of key opiate alkaloids for the benefit of the pharmaceutical industry and the UK industrial biotechnology sector.
植物已经进化到产生大量复杂的化学结构,以抵御食草动物和病原体的攻击,并保护自己免受恶劣环境的侵害。这些化学结构也为植物提供了人类文明数千年来所依赖的药用特性。罂粟是世界上最重要的药用植物之一,是制药业使用的天然产品的最大单一来源。鸦片罂粟产生鸦片生物碱,如吗啡和可待因,这是止痛药的主要类别之一。这些阿片类生物碱的化学结构非常复杂,植物仍然是生产它们的最佳工厂。罂粟还产生数百种其他生物碱,这些生物碱是其他几种药物的来源。商业上种植的罂粟采用大面积耕作方法,作物用机械收割,运到工厂提取高价值的化学品。制药公司如葛兰素史克和约翰逊&约翰逊有自己的生产系统,用于从罂粟中生产阿片类生物碱。我们在约克大学的新农产品中心的小组一直在与葛兰素史克公司合作开发新品种的罂粟,以产生更多的吗啡烷生物碱,如吗啡和可待因。我们也一直在研究罂粟如何产生诺斯卡品,一种阻止人类细胞分裂的抗肿瘤生物碱。诺斯卡品已被用作人类咳嗽抑制剂数十年。它在治疗各种癌症方面的有效性最近已经得到证实,美国正在进行早期临床试验。我们特别想发现罂粟中的诺斯卡品是如何产生的,因为这将有助于我们培育出更多的新品种,并深入了解可能具有有用药物活性的相关分子。我们的工作导致了一项重大突破,该突破最近发表在领先的科学杂志上(Winzer等人,Science 2012,336:1704-8)。通过比较产生诺斯卡品的罂粟品种和不产生诺斯卡品的罂粟品种,我们发现诺斯卡品的合成途径是由编码五种不同酶的十个基因组成的复杂簇控制的。这是迄今为止在植物中发现的最复杂的基因簇,为基因复制和重组驱动簇进化的过程提供了宝贵的见解。这一提议建立在我们令人兴奋的突破基础上,旨在确定该基因簇是否也存在于其他相关物种中,这些物种也制造诺斯卡品。这将为基因簇进化的机制和过程提供新的见解。阐明我们发现的诺斯卡品生物合成的生化途径的细节将使我们能够更好地设计策略,以提高诺斯卡品和相关分子的生产。诺斯卡品是由生物碱生物合成途径的一个单独的分支产生的,该分支用于产生吗啡和可待因。是什么调节分子流入这些不同的分支还不清楚,我们现在有工具和知识来解决这一重要问题的第一次。解决这些问题不仅增加了我们对制药工业天然产物原料方面最重要的药用植物的了解,还为我们提供了知识平台和工具,以开发新品种的罂粟,这些罂粟被优化用于生产生物碱,如诺斯卡品,吗啡和可待因。该提案的最终目标是利用分子育种方法开发具有优化水平的关键阿片类生物碱的罂粟新品种,以造福制药业和联合王国工业生物技术部门。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Untapped resources for medical research.
未开发的医学研究资源。
  • DOI:
    10.1126/science.abc8085
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pérez-Escobar OA
  • 通讯作者:
    Pérez-Escobar OA
A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago.
  • DOI:
    10.1038/s41467-022-30856-w
  • 发表时间:
    2022-06-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Graham其他文献

Japanisation as mythology
作为神话的日本化
  • DOI:
    10.1111/j.1468-2338.1988.tb00016.x
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ian Graham
  • 通讯作者:
    Ian Graham
Obituary for Colin Rex Ward: 31 December 1945–18 September 2018
  • DOI:
    10.1016/j.coal.2018.10.007
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Graham;David French
  • 通讯作者:
    David French
Extremal properties associated with univalent subordination chains in $$\mathbb {C}^n$$
  • DOI:
    10.1007/s00208-013-0998-y
  • 发表时间:
    2013-12-06
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ian Graham;Hidetaka Hamada;Gabriela Kohr;Mirela Kohr
  • 通讯作者:
    Mirela Kohr
A boundary rigidity theorem for holomorphic self-mappings of Hilbert balls
希尔伯特球全纯自映射的边界刚性定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Graham;濱田 英隆、Gabriela Kohr
  • 通讯作者:
    濱田 英隆、Gabriela Kohr
Transformation of organic to inorganic nitrogen in NHsub4/subsup+/sup-illite-bearing and Ga-Al-REE-rich bituminous coals: Evidence from nitrogen isotopes and functionalities
含铵伊利石和富镓-铝-稀土元素烟煤中有机氮向无机氮的转化:来自氮同位素和官能团的证据
  • DOI:
    10.1016/j.chemgeo.2024.122169
  • 发表时间:
    2024-08-20
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Qian Wang;Shifeng Dai;Victor P. Nechaev;David French;Ian Graham;Lei Zhao;Shaowei Zhang;Yang Liang;James C. Hower
  • 通讯作者:
    James C. Hower

Ian Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Graham', 18)}}的其他基金

Bioactive terpenoids as high performance ingredients for industry
生物活性萜类化合物作为高性能工业成分
  • 批准号:
    BB/Y003217/1
  • 财政年份:
    2023
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
High Value Biorenewables (HVB) Network
高价值生物可再生能源 (HVB) 网络
  • 批准号:
    BB/S009701/1
  • 财政年份:
    2019
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
Developing platforms for the production of diterpenoids (TSB application reference 43970-304155)
开发二萜类化合物生产平台(TSB 申请参考号 43970-304155)
  • 批准号:
    BB/M018210/1
  • 财政年份:
    2015
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
High Value Chemicals from Plants Network
来自植物网络的高价值化学品
  • 批准号:
    BB/L013665/1
  • 财政年份:
    2014
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
Using wild ancestor plants to make rice more resilient to increasingly unpredictable water availability
利用野生祖先植物使水稻更能适应日益不可预测的水资源供应
  • 批准号:
    BB/J011851/1
  • 财政年份:
    2013
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
FLIP: Developing biorenewables based feedstock and clean chemistry technologies for the pharmaceutical industry
FLIP:为制药行业开发基于生物可再生的原料和清洁化学技术
  • 批准号:
    BB/L004917/1
  • 财政年份:
    2013
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
The role of the oxylipin OPDA in the seasonal sensitivity of seed dormancy
氧脂素 OPDA 在种子休眠季节敏感性中的作用
  • 批准号:
    BB/J00216X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
Defining the role of the ABI4 transcription factor in the sugar regulated control of storage oil breakdown in Arabidopsis
定义 ABI4 转录因子在拟南芥贮藏油分解糖调节控制中的作用
  • 批准号:
    BB/E022081/1
  • 财政年份:
    2008
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
Defining the role of PIF3-like bHLH transcription factors in the integration of light and cold signalling in Arabidopsis
定义拟南芥中 PIF3 样 bHLH 转录因子在光和冷信号整合中的作用
  • 批准号:
    BB/E000541/1
  • 财政年份:
    2006
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant
Metabolomic and transcriptomic analysis of the controls on carbon partitioning into TAG reserves in oilseeds
油籽中碳分配到 TAG 储备控制的代谢组学和转录组学分析
  • 批准号:
    BB/D006856/1
  • 财政年份:
    2006
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Research Grant

相似国自然基金

CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
精氨酸调控骨髓Tregs稳态在脓毒症骨髓功能障碍中的作用研究
  • 批准号:
    82371770
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚低温调控颅脑创伤急性期神经干细胞Mpc2/Lactate/H3K9lac通路促进神经修复的研究
  • 批准号:
    82371379
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
  • 批准号:
    82371150
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
内源性蛋白酶抑制剂SerpinA3N对缺血性脑卒中后血脑屏障的保护作用及其表达调控机制
  • 批准号:
    82371317
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

PlantSynBio: A Novel CRISPR SynBio Tool for Investigating and Reprogramming the Regulation of Alkaloid Biosynthesis in Catharanthus roseus
PlantSynBio:一种新型 CRISPR SynBio 工具,用于研究和重新编程长春花生物碱生物合成的调节
  • 批准号:
    2031237
  • 财政年份:
    2021
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Standard Grant
UBXN2A represses migration and invasion of colorectal cancer cells
UBXN2A抑制结直肠癌细胞的迁移和侵袭
  • 批准号:
    9910369
  • 财政年份:
    2019
  • 资助金额:
    $ 153.71万
  • 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
  • 批准号:
    10458319
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
  • 批准号:
    10120163
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
  • 批准号:
    10188439
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
  • 批准号:
    10466811
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
  • 批准号:
    10197596
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
AP2/ERF transcription factors involved in the regulation of isoquinoline alkaloid biosynthesis
AP2/ERF转录因子参与异喹啉生物碱生物合成的调节
  • 批准号:
    18K14439
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
  • 批准号:
    9753300
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
  • 批准号:
    10675986
  • 财政年份:
    2018
  • 资助金额:
    $ 153.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了