Developmental roles of miR156/172-regulated transcription factors in barley

大麦中miR156/172调控转录因子的发育作用

基本信息

  • 批准号:
    BB/L001934/1
  • 负责人:
  • 金额:
    $ 43.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Cereal grain forms the basis of our food supply. During domestication and subsequent breeding, cereal architecture or body plan was often drastically modified to produce plants which produce higher grain yeilds. Growth of flowering plants, including cereals, reflects the progression of growth phases which influence architecture, broadly moving from vegetative juvenile growth to vegetative adult and finally to the reproductive phase. In temperate cereals, vegetative growth involves production of a main shoot giving rise to leaves and additional shoots, while in reproductive phase, shoots form a spike tip on which develop rows of grain. Although produced at the end of the life cycle, grain yield often reflects earlier developmental events. For instance, yield may be affected by the number of shoots which form fertile spikes and/or the amount of photosynthetic energy related to the number of leaves set. To meet the rapid, rising cereal demand, a sophisticated molecular understanding of genes regulating plant architecture is required for breeders to quickly and confidently select for better-performing crops - yet the depth of knowledge about gene function in temperate cereals such as wheat and barley, both dominant global crops, is especially thin, reflecting the traditional recalcitrance of these species to molecular study. However, recent accelerated generation of sophisticated genomic and molecular tools and resources for barley hold great promise to unlock the developmental genetics of temperate cereal architecture by using this crop as a developmental model.My proposed research will capitalize on exciting work in other plant model systems which highlights the role of a conserved developmental phase network in the regulation of multiple yield-related architectural traits. This network is driven by antagonism between two microRNA (miRNA) gene families, miR156 and miR172, which encode short regulatory RNA molecules: miR156 is abundant early in the life-cycle to promote juvenile characteristics, like leaf production, however, over time miR156 levels fall, inhibited by rising levels of miR172, associated with adult and reproductive traits. These miRNAs function through repression of multiple target transcription factors, proteins that themselves regulate genes to control specific developmental traits. My research ambition is to understand which traits are controlled by individual miR156/172-regulated transcription factors in temperate cereals, in particular, barley, and how these factors control gene expression in order to inform future breeding efforts.In fact, I have already found that a gene encoding a miR172-regulated transcription factor in barley is a master regulator of internode elongation in the stem and spike, thereby directly influencing grain density and plant height, both important agronomic traits. Height influences lodging (falling over) of top-heavy, grain-laden crops, making the control of plant height desirable. This gene is the first transcription factor implicated in internode growth in barley and I predict that it functions by controlling the expression of a suite of downstream genes, which could also be potential breeding targets. In this project, I will employ gene expression, biochemical and sequencing techniques to definitively identify these target genes. Moreover, I will examine possible interactions with other pathways involved in internode growth, as a first step towards building a regulatory gene network explaining internode growth. In addition, I will determine where and when other miR156/172-regulated transcription factors in barley are expressed. Finally, I will use powerful transgenic approaches to tease apart individual contributions to other traits controlled by these transcription factors. I anticipate that through this research, new genes involved in important traits for farmers will be identified and characterized, acting to inform crop breeding.
谷物是我们食物供应的基础。在驯化和随后的育种过程中,谷物结构或身体计划经常被彻底改变,以产生产生更高谷物产量的植物。包括谷类在内的开花植物的生长反映了影响结构的生长阶段的进展,大致从营养性幼年生长到营养性成年生长,最后到生殖阶段。在温带谷物中,营养生长包括产生主枝,产生叶子和额外的枝条,而在生殖阶段,枝条形成穗尖,在穗尖上发育成一排排谷物。虽然谷物产量是在生命周期的末期生产的,但它往往反映了早期的发育事件。例如,产量可能受到形成可育穗的芽的数量和/或与叶片数相关的光合能量的量的影响。为了满足快速增长的谷物需求,育种者需要对调节植物结构的基因进行复杂的分子理解,以快速自信地选择表现更好的作物-然而,对小麦和大麦等温带谷物(这两种全球主要作物)的基因功能的了解尤其薄弱,反映了这些物种对分子研究的传统依赖。然而,最近加速产生的复杂的基因组和分子工具和资源大麦持有巨大的希望解开温带谷物架构的发育遗传学,通过使用这种作物作为一个developmental model.My拟议的研究将利用在其他植物模型系统,突出了一个保守的发育阶段网络在多个产量相关的建筑性状的调节中的作用令人兴奋的工作。这个网络是由两个microRNA(miRNA)基因家族miR 156和miR 172之间的拮抗作用驱动的,miR 156和miR 172编码短的调控RNA分子:miR 156在生命周期早期是丰富的,以促进幼年特征,如叶的产生,然而,随着时间的推移,miR 156水平下降,受到miR 172水平上升的抑制,与成年和生殖特征相关。这些miRNAs通过抑制多个靶转录因子发挥作用,这些靶转录因子是自身调节基因以控制特定发育性状的蛋白质。我的研究目标是了解哪些性状是由个别miR 156/172调节的转录因子控制的温带谷物,特别是大麦,以及这些因子如何控制基因表达,以便为未来的育种工作提供信息。事实上,我已经发现,大麦中编码miR 172调节的转录因子的基因是茎和穗节间伸长的主要调节因子,从而直接影响籽粒密度和株高这两个重要的农艺性状。高度会影响头重脚轻、籽粒较多的作物的倒伏(倒伏),因此需要控制植株高度。该基因是第一个与大麦节间生长有关的转录因子,我预测它通过控制一系列下游基因的表达来发挥作用,这些下游基因也可能是潜在的育种目标。在这个项目中,我将采用基因表达,生物化学和测序技术来确定这些目标基因。此外,我将研究可能的相互作用与其他途径参与节间生长,作为第一步,建立一个调控基因网络解释节间生长。此外,我将确定其他miR 156/172调节的转录因子在大麦中表达的位置和时间。最后,我将使用强大的转基因方法来梳理除了这些转录因子控制的其他性状的个人贡献。我预计,通过这项研究,涉及农民重要性状的新基因将被识别和表征,为作物育种提供信息。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Barley Genome
  • DOI:
    10.1007/978-3-319-92528-8
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Stein;G. Muehlbauer
  • 通讯作者:
    N. Stein;G. Muehlbauer
Annual Plant Reviews online
年度植物评论在线
  • DOI:
    10.1002/9781119312994.apr0538
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Urbanova T
  • 通讯作者:
    Urbanova T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah McKim其他文献

Sarah McKim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah McKim', 18)}}的其他基金

Facing Forwards - Understanding epidermal development in cereals
面向未来 - 了解谷物的表皮发育
  • 批准号:
    BB/Y001850/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant
Australia Partnering Award: International pooling for advanced cereal science - IPAC
澳大利亚合作奖:先进谷物科学国际汇集 - IPAC
  • 批准号:
    BB/V018299/1
  • 财政年份:
    2022
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant
The Generation Gap - Mechanisms of maternal control on grain
代沟——母亲对粮食的控制机制
  • 批准号:
    BB/W003074/1
  • 财政年份:
    2022
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant
Mechanisms underlying variation in barley hull adhesion
大麦壳附着力变化的机制
  • 批准号:
    BB/R010315/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant
Molecular and genetic networks determining row number in cultivated barley
决定栽培大麦行数的分子和遗传网络
  • 批准号:
    BB/K017667/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Standard Grant
Chemical staples and chemical probes to dissect dynamins cellular roles.
用于剖析动力细胞作用的化学钉书和化学探针。
  • 批准号:
    DP240100514
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Discovery Projects
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Roles of immune cells derived from clonal hematopoiesis in B-cell lymphomas
克隆造血来源的免疫细胞在 B 细胞淋巴瘤中的作用
  • 批准号:
    24K19213
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BeyondSNO: Signalling beyond protein S-nitrosylation - determining the roles of nitroxyl and hydroxylamine
BeyondSNO:蛋白质 S-亚硝基化之外的信号传导 - 确定硝酰基和羟胺的作用
  • 批准号:
    EP/Y027698/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Research Grant
Roles of emerging pollutants in spreading antimicrobial resistance
新出现的污染物在传播抗菌素耐药性方面的作用
  • 批准号:
    DE240100842
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Discovery Early Career Researcher Award
Uncovering the unconventional and multifaceted roles of histamine in bacterial infection
揭示组胺在细菌感染中的非常规和多方面的作用
  • 批准号:
    502559
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319850
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Standard Grant
Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
  • 批准号:
    2401267
  • 财政年份:
    2024
  • 资助金额:
    $ 43.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了