The genetic mechanisms underlying the regenerative potential of ensheathing glial cells in Drosophila

果蝇鞘神经胶质细胞再生潜力的遗传机制

基本信息

  • 批准号:
    BB/L008343/1
  • 负责人:
  • 金额:
    $ 52.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The central nervous system (CNS) does not regenerate after damage. Thus, spinal cord and brain damage (e.g. injury, stroke, multiple sclerosis) and neurodegeneration (e.g. Alzheimer's and Parkinson's diseases) result in devastating permanent disability. However, cells can accommodate changes in development and throughout normal life (e.g. during learning) to maintain normal function and behaviour, and regeneration after injury in animals also reveals that cells have a natural ability to sense and restore normal organism integrity. Understanding how cells 'know' how to achieve this and why they cannot in the CNS, is a great goal of biology and neuroscience. The glial cells that ensheath CNS axons respond to damage by proliferating, leading to axonal re-enwrapment and partial functional recovery of behavior. This glial regenerative response (GRR) is limited, but it is found across species, from flies to humans, suggesting that there is a natural, genetic mechanism of CNS repair. If we could understand this mechanism, we would be able to manipulate glial cells to promote repair. In mammals, oligodendrocyte progenitor cells (OPCs) have the greatest potential to induce regeneration in the damaged CNS and transplantation of stem or OPCs to the lesion site is the most promising therapeutic approach to CNS damage. However, the current scarce knowledge of how transplanted cells behave prevents a guarantee of repair or of avoidance of cancer. Most critically, what controls the differentiation of glial cells enabling axonal re-enwrapment and how might they influence neuronal regeneration or repair, are unknown. The fruit-fly Drosophila is a very powerful model organism to identify gene networks and test gene function in vivo, and it is successfully used to investigate responses to CNS injury, regeneration and repair. This led to the discovery of genetic mechanisms that induce glial proliferation, cell debris clearance, and axonal and dendritic regeneration. Genes discovered in fruit-flies are then tested in mammals, expediting research, and minimizing the use of protected animals.With BBSRC funding, we recently discovered a gene network controlling the Glial Regenerative Response (GRR) in Drosophila. This involves the genes encoding Prospero (Pros, a transcription factor that inhibits proliferation and promotes differentiation), Notch and NFkB (two cell cycle activators). Together, they form a homeostatic mechanism that balances glial cell number and differentiation control, enabling enwrapment whilst preventing tumours. Upon CNS injury, this gene network activates the glia to clear up cell debris, triggers their proliferation restoring cell number and enables axonal re-enwrapment. Manipulating Notch and Pros levels is sufficient to induce glial regeneration and promote axonal neuropile repair. We have tested this gene network in the mouse, and found that the pros homologue Prox1 is present in mammalian NG2-positive OPCs. This indicates that the GRR gene network is evolutionarily conserved. It is key to find out what genes are regulated by Pros to promote glial differentiation and enable glial and neuronal regeneration or repair. We aim to discover and investigate the functions of these genes. (1) We will select 5 out of 39 candidate genes regulated by Pros with potential functions in the GRR, including kon-tiki (kon), the Drosophila homologue of NG2. (2) We will analyse the functions of kon and four other genes in the glial responses to injury, and test their link to the GRR gene network. (3) We will investigate whether these genes can influence neuronal regeneration and/or repair.The outcome will be the discovery of molecular genetic mechanisms underlying glial differentiation and/or neuronal regeneration. In future projects, we will test our discoveries in mice, thus implementing the 3Rs policy (Refinement, Reduction, Replacement) using flies to speed up research for the improvement of human wellbeing and health.
中枢神经系统(CNS)在受损后不能再生。因此,脊髓和脑损伤(例如损伤、中风、多发性硬化)和神经变性(例如阿尔茨海默病和帕金森病)导致毁灭性的永久残疾。然而,细胞可以适应发育和整个正常生活(例如在学习期间)的变化,以维持正常的功能和行为,动物受伤后的再生也表明细胞具有感知和恢复正常生物体完整性的天然能力。了解细胞如何“知道”如何实现这一点,以及为什么它们不能在中枢神经系统中实现这一点,是生物学和神经科学的一个伟大目标。包裹CNS轴突的神经胶质细胞通过增殖对损伤作出反应,导致轴突重新包裹和行为的部分功能恢复。这种神经胶质再生反应(GRR)是有限的,但它在不同物种中发现,从苍蝇到人类,这表明CNS修复有一种天然的遗传机制。如果我们能够理解这种机制,我们就能够操纵神经胶质细胞来促进修复。在哺乳动物中,少突胶质细胞祖细胞(OPCs)具有最大的诱导受损CNS再生的潜力,并且干细胞或OPCs向损伤部位的移植是CNS损伤的最有希望的治疗方法。然而,目前缺乏关于移植细胞如何表现的知识,这阻碍了修复或避免癌症的保证。最关键的是,是什么控制了神经胶质细胞的分化,使轴突重新包裹,以及它们如何影响神经元的再生或修复,是未知的。果蝇是一个非常强大的模式生物,以确定基因网络和测试基因的功能在体内,它被成功地用于研究对中枢神经系统损伤,再生和修复的反应。这导致了诱导神经胶质细胞增殖、细胞碎片清除以及轴突和树突再生的遗传机制的发现。在果蝇中发现的基因随后在哺乳动物中进行测试,加快研究,并最大限度地减少保护动物的使用。在BBSRC的资助下,我们最近发现了一个控制果蝇神经胶质再生反应(GRR)的基因网络。这涉及编码Prospero(Pros,一种抑制增殖和促进分化的转录因子)、Notch和NFkB(两种细胞周期激活因子)的基因。它们共同形成了一种平衡神经胶质细胞数量和分化控制的稳态机制,从而在防止肿瘤的同时实现包裹。在CNS损伤时,该基因网络激活神经胶质细胞以清除细胞碎片,触发它们的增殖以恢复细胞数量并使轴突重新包裹。操纵Notch和Pros水平足以诱导神经胶质再生并促进轴突神经桩修复。我们已经在小鼠中测试了这个基因网络,发现prox同源物Prox 1存在于哺乳动物NG 2阳性OPC中。这表明GRR基因网络在进化上是保守的。找出Pros调控哪些基因以促进胶质细胞分化并使胶质细胞和神经元再生或修复是关键。我们的目标是发现和研究这些基因的功能。(1)我们将从39个受Pros调控的候选基因中选择5个在GRR中具有潜在功能的基因,包括NG 2的果蝇同源物kon-tiki(kon)。(2)我们将分析kon和其他四个基因在神经胶质对损伤的反应中的功能,并测试它们与GRR基因网络的联系。(3)我们将研究这些基因是否能影响神经元的再生和/或修复,其结果将是发现神经胶质细胞分化和/或神经元再生的分子遗传机制。在未来的项目中,我们将在小鼠中测试我们的发现,从而利用苍蝇实施3R政策(改进,减少,替代),以加快改善人类福祉和健康的研究。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regenerative neurogenic response from glia requires insulin driven neuron-glia communication
神经胶质细胞的再生神经反应需要胰岛素驱动的神经元-神经胶质细胞通讯
  • DOI:
    10.1101/721498
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harrison N
  • 通讯作者:
    Harrison N
Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.
  • DOI:
    10.1371/journal.pone.0145334
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kato K;Konno D;Berry M;Matsuzaki F;Logan A;Hidalgo A
  • 通讯作者:
    Hidalgo A
Go and stop signals for glial regeneration.
  • DOI:
    10.1016/j.conb.2017.10.011
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Hidalgo A;Logan A
  • 通讯作者:
    Logan A
Regenerative neurogenic response from glia requires insulin-driven neuron-glia communication.
  • DOI:
    10.7554/elife.58756
  • 发表时间:
    2021-02-02
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Harrison NJ;Connolly E;Gascón Gubieda A;Yang Z;Altenhein B;Losada Perez M;Moreira M;Sun J;Hidalgo A
  • 通讯作者:
    Hidalgo A
Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila.
  • DOI:
    10.1083/jcb.201607098
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Foldi I;Anthoney N;Harrison N;Gangloff M;Verstak B;Nallasivan MP;AlAhmed S;Zhu B;Phizacklea M;Losada-Perez M;Moreira M;Gay NJ;Hidalgo A
  • 通讯作者:
    Hidalgo A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alicia Hidalgo其他文献

12-P001 Synaptic and locomotion functions of the <em>Drosophila</em> neurotrophins
  • DOI:
    10.1016/j.mod.2009.06.455
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ben Sutcliffe;Manuel Forero-Vargas;Alicia Hidalgo
  • 通讯作者:
    Alicia Hidalgo
University of Birmingham Kek-6
伯明翰大学 Kek-6
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suzana Ulian;Simon Bishop;Istvan Foldi;J. Wentzell;Chinenye Okenwa;Manuel G. Forero;Bangfu Zhu;Marta Moreira;Mark Phizacklea;Graham McIlroy;Guiyi Li;Nicholas J. Gay;Alicia Hidalgo
  • 通讯作者:
    Alicia Hidalgo
19-P007 A gene regulatory network involving prospero, Notch, TNF and NFκB underlies a glial-repair-response to CNS injury
  • DOI:
    10.1016/j.mod.2009.06.795
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kentaro Kato;Manuel Forero;Janine Fenton;Alicia Hidalgo
  • 通讯作者:
    Alicia Hidalgo
Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched.
果蝇节段中的细胞模式:节段极性基因修补的空间调节。
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Alicia Hidalgo;Philip W. Ingham
  • 通讯作者:
    Philip W. Ingham
09-P049 DeadEasy: Automatic cell counting in vivo in <em>Drosophila</em>
  • DOI:
    10.1016/j.mod.2009.06.379
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Manuel Forero;Jenny Pennack;Anabel Learte;Kentaro Kato;Stephanie Cartwright;Alicia Hidalgo
  • 通讯作者:
    Alicia Hidalgo

Alicia Hidalgo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alicia Hidalgo', 18)}}的其他基金

Toll and kinase-less Trk receptors in concert drive a novel mechanism of structural synaptic plasticity.
Toll 和无激酶 Trk 受体协同驱动结构突触可塑性的新机制。
  • 批准号:
    BB/R017034/1
  • 财政年份:
    2018
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Research Grant
Tolls and neurotrophins in central nervous system regeneration and repair in Drosophila
果蝇中枢神经系统再生和修复中的Toll和神经营养素
  • 批准号:
    BB/R00871X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Research Grant
"Behavioural assays for structural plasticity and repair in the central nervous system of Drosophila"
“果蝇中枢神经系统结构可塑性和修复的行为测定”
  • 批准号:
    BB/P004997/1
  • 财政年份:
    2016
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Research Grant
The molecular control of glial progenitor proliferation in Drosophila and mammals: investigation of Prox1 conditional knock-out mutant mice.
果蝇和哺乳动物神经胶质祖细胞增殖的分子控制:Prox1 条件敲除突变小鼠的研究。
  • 批准号:
    BB/K02146X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Research Grant
The molecular control of glial progenitor proliferation in Drosophila and mammals
果蝇和哺乳动物神经胶质祖细胞增殖的分子控制
  • 批准号:
    BB/H002278/1
  • 财政年份:
    2010
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Mechanisms Underlying the Development of Atherosclerosis
动脉粥样硬化发展的新机制
  • 批准号:
    10589484
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Oncogenic mechanisms underlying GLI2-amplified medulloblastoma
GLI2扩增的髓母细胞瘤的致癌机制
  • 批准号:
    10561373
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
The Underlying Mechanisms of Visual Impairment and Myopia in Prematurity
早产儿视力障碍和近视的潜在机制
  • 批准号:
    10584723
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Delineating mechanisms underlying the enhanced stability and functionality of CD2-KO Tregs and chimeric antigen receptor (CAR) Tregs and their application in xenotransplantation
描述 CD2-KO Tregs 和嵌合抗原受体 (CAR) Tregs 稳定性和功能增强的机制及其在异种移植中的应用
  • 批准号:
    10646753
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Mechanisms underlying diarrhea and gut inflammation mediated by Enterotoxigenic and Enteropathogenic E. coli
产肠毒素和致病性大肠杆菌介导的腹泻和肠道炎症的机制
  • 批准号:
    10674072
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Molecular mechanisms underlying optimal glucocorticoid therapy for vocal fold disease
声带疾病最佳糖皮质激素治疗的分子机制
  • 批准号:
    10647027
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Mechanisms underlying Sex differences in Cerebral Amyloid Angiopathy: The Fibrin-Microglia Crosstalk
脑淀粉样血管病性别差异的潜在机制:纤维蛋白-小胶质细胞串扰
  • 批准号:
    10662862
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
  • 批准号:
    10750482
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development - Research Supplement to Promote Diversity in Health-Related Research
识别 PACS1 综合征的致病机制:对神经发育的影响 - 促进健康相关研究多样性的研究补充
  • 批准号:
    10741578
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
Deciphering molecular genetic mechanisms underlying chromatin interactions
破译染色质相互作用的分子遗传机制
  • 批准号:
    DE220101210
  • 财政年份:
    2023
  • 资助金额:
    $ 52.54万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了