Structural, Mechanistic and Functional Studies on Protein Hydroxylases

蛋白质羟化酶的结构、机制和功能研究

基本信息

  • 批准号:
    BB/L009846/1
  • 负责人:
  • 金额:
    $ 88.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Proteins are polymers that are crucial to all aspects of life. Proteins are biologically produced polymers that are synthesised by polymerisation of monomeric amino acids. The template for the polymerisation process is messenger ribonucleic acid (mRNA), which in turn is encoded for by DNA, which is used for relatively long-term storage of information in the cells of all living organisms. However, once they have been synthesised, proteins can be further modified in processes that are often crucial for their physiological function. One such process is reaction with atmospheric oxygen, a small and high diffusible molecule. We are interested in defining how and why proteins react with oxygen from the atmosphere. In pioneering work it was found that atmospheric oxygen reacts with collagen, a material which helps cells to stick together in animals, in a reaction catalysed by oxygenases. Oxygenases are types of enzymes (or biological catalysts), that incorporate atmospheric oxygen into their reaction products. Many oxygenases use a metal, such as iron, to help capture oxygen. Subsequent to the discovery of its role in collagen biosynthesis, it was found that oxygenases play key roles in the production of antibiotics, such as the penicillins. More recently, we have found that oxygenases also catalyse the hydroxylation of proteins. Some of the protein targets of oxygenases are important from biological and medicinal perspectives. A breakthrough was the discovery that the physiological mechanism by which cells in animals respond to limiting oxygen is actually regulated by oxygenase catalysed hydroxylation of proteins, involved in regulating the conversion of DNA to mRNA. Following this discovery we, and others, have found other protein-hydroxylases, acting on a range of protein-residues. We are now in an exceptionally good position to work out how these enzymes work, including developing an understanding of how they bind their protein substrates. We will use crystallographic and other techniques, that will provide detailed information on how the enzymes work as machines. The structural and mechanistic studies will lay the groundwork in order to exploit the basic science to artificially alter the activity of the oxygenases, using them for the production of high-value modified proteins, and to provide knowledge that will be useful for the pharmaceutical industry in targeting them for diseases. Overall the work will enable the United Kingdom to remain at the forefront of basic science research on oxygenases and the exploitation of this research for the development of new medicines and catalysts for high value chemical production.
蛋白质是对生命的各个方面都至关重要的聚合物。蛋白质是由单体氨基酸聚合而成的生物聚合物。聚合过程的模板是信使核糖核酸(mRNA),而信使核糖核酸又由DNA编码,DNA用于在所有生物体的细胞中相对长期地存储信息。然而,一旦它们被合成,蛋白质可以在通常对其生理功能至关重要的过程中进一步修饰。一个这样的过程是与大气中的氧气反应,氧气是一种小而高扩散性的分子。我们感兴趣的是确定蛋白质如何以及为什么与大气中的氧气反应。在开创性的工作中,人们发现大气中的氧气与胶原蛋白发生反应,胶原蛋白是一种帮助动物细胞粘附在一起的材料,在加氧酶的催化下发生反应。加氧酶是一种酶(或生物催化剂),它将大气中的氧结合到其反应产物中。许多加氧酶使用金属,如铁,来帮助捕获氧气。在发现其在胶原生物合成中的作用之后,发现加氧酶在抗生素如青霉素的生产中起关键作用。最近,我们发现加氧酶也催化蛋白质的羟基化。从生物学和医学的角度来看,加氧酶的一些蛋白质靶标是重要的。一个突破性的发现是,动物细胞对限制氧气的生理机制实际上是由加氧酶催化的蛋白质羟基化调节的,参与调节DNA向mRNA的转化。在这一发现之后,我们和其他人发现了其他蛋白质羟化酶,作用于一系列蛋白质残基。我们现在处于一个非常好的位置,可以弄清楚这些酶是如何工作的,包括了解它们如何结合蛋白质底物。我们将使用晶体学和其他技术,这将提供有关酶如何作为机器工作的详细信息。结构和机制研究将奠定基础,以便利用基础科学来人工改变加氧酶的活性,利用它们来生产高价值的改性蛋白质,并为制药业提供有用的知识,以针对疾病。总的来说,这项工作将使联合王国保持在加氧酶基础科学研究的前沿,并利用这项研究开发新药和高价值化学品生产的催化剂。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ribosomal oxygenases are structurally conserved from prokaryotes to humans.
  • DOI:
    10.1038/nature13263
  • 发表时间:
    2014-06-19
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Chowdhury R;Sekirnik R;Brissett NC;Krojer T;Ho CH;Ng SS;Clifton IJ;Ge W;Kershaw NJ;Fox GC;Muniz JRC;Vollmar M;Phillips C;Pilka ES;Kavanagh KL;von Delft F;Oppermann U;McDonough MA;Doherty AJ;Schofield CJ
  • 通讯作者:
    Schofield CJ
A human protein hydroxylase that accepts D-residues.
  • DOI:
    10.1038/s42004-020-0290-5
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Choi, Hwanho;Hardy, Adam P.;Leissing, Thomas M.;Chowdhury, Rasheduzzaman;Nakashima, Yu;Ge, Wei;Markoulides, Marios;Scotti, John S.;Gerken, Philip A.;Thorbjornsrud, Helen;Kang, Dahye;Hong, Sungwoo;Lee, Joongoo;McDonough, Michael A.;Park, Hwangseo;Schofield, Christopher J.
  • 通讯作者:
    Schofield, Christopher J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Joseph Schofield其他文献

The Triple Combination of Meropenem, Avibactam, and a Metallo-β-Lactamase Inhibitor Optimizes Antibacterial Coverage Against Different β-Lactamase Producers
美罗培南、阿维巴坦和金属-β-内酰胺酶抑制剂的三重组合可优化针对不同 β-内酰胺酶生产者的抗菌覆盖范围
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Zhuoren Ling;Alistair James Macdonald Farley;Aditya Lankapalli;Yanfang Zhang;Shonnette Premchand;Kate Cook;Andrei Baran;Charlotte Gray;Claudia Orbegozo Rubio;Edgars Suna;Jordan Mathias;J. Brem;Kirsty Sands;Maria Nieto;Maria Mykolaivna Trush;Nadira Naznin Rakhi;Willames Martins;Yuqing Zhou;Christopher Joseph Schofield;Timothy Walsh
  • 通讯作者:
    Timothy Walsh

Christopher Joseph Schofield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Joseph Schofield', 18)}}的其他基金

Lachnospiraceae in the gut microbiome and their role in disease
肠道微生物组中的毛螺菌科及其在疾病中的作用
  • 批准号:
    BB/V003291/1
  • 财政年份:
    2021
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Structural, Mechanistic and Functional Studies on Oxgenases
加氧酶的结构、机制和功能研究
  • 批准号:
    BB/V001892/1
  • 财政年份:
    2021
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
SAMRC Award - University of Oxford
SAMRC 奖 - 牛津大学
  • 批准号:
    MC_PC_16092
  • 财政年份:
    2017
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Intramural
Analysis and Exploitation of Oxygen-Dependent Modification to Ribosomes
核糖体氧依赖性修饰的分析和开发
  • 批准号:
    BB/L004275/1
  • 财政年份:
    2014
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Characterisation and Inhibition of Carnitine Biosynthesis Oxygenases
肉碱生物合成加氧酶的表征和抑制
  • 批准号:
    BB/L000121/1
  • 财政年份:
    2014
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Evolution of Oxygen Sensing in Animals
动物氧传感的进化
  • 批准号:
    BB/J003018/1
  • 财政年份:
    2011
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Mechanistic Studies on the Remarkable Epimerisations of Clavam and Carbapenem Biosynthesis
克拉酰胺和碳青霉烯生物合成显着差向异构化的机理研究
  • 批准号:
    BB/F006349/1
  • 财政年份:
    2008
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Functional assignments on human oxygenases
人类氧酶的功能分配
  • 批准号:
    BB/D011523/1
  • 财政年份:
    2006
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant

相似海外基金

The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Standard Grant
Integrating deep phenotyping and functional genomics to understand the mechanistic basis of primary lymphatic anomalies
整合深层表型分析和功能基因组学,了解原发性淋巴异常的机制基础
  • 批准号:
    MR/Y013786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Functional and mechanistic delineation of HuR-Wisp1 signaling on myofibroblast activity
HuR-Wisp1信号对肌成纤维细胞活性的功能和机制描述
  • 批准号:
    10736289
  • 财政年份:
    2023
  • 资助金额:
    $ 88.23万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 88.23万
  • 项目类别:
Dynamic entanglements: the functional role and mechanistic basis of inter-individual neural synchrony
动态纠缠:个体间神经同步的功能作用和机制基础
  • 批准号:
    10644475
  • 财政年份:
    2023
  • 资助金额:
    $ 88.23万
  • 项目类别:
Interoception and functional seizures: a mechanistic and diagnostic approach
内感受和功能性癫痫发作:机械和诊断方法
  • 批准号:
    MR/V037676/1
  • 财政年份:
    2022
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Research Grant
Mechanistic Studies of the Functional Consequences of Heterologous Expression of Actinomycetal Megasynthases
放线菌大合成酶异源表达功能后果的机制研究
  • 批准号:
    10439127
  • 财政年份:
    2022
  • 资助金额:
    $ 88.23万
  • 项目类别:
Mental fatigue and motor performance: Functional and mechanistic insights
精神疲劳和运动表现:功能和机制的见解
  • 批准号:
    RGPIN-2019-05127
  • 财政年份:
    2022
  • 资助金额:
    $ 88.23万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating the Functional and Mechanistic Roles of LINE-1 Retrotransposons in Myeloid Leukemia
阐明 LINE-1 逆转录转座子在髓系白血病中的功能和机制作用
  • 批准号:
    10380514
  • 财政年份:
    2021
  • 资助金额:
    $ 88.23万
  • 项目类别:
Functional and mechanistic analysis of FSHD myocytes
FSHD 肌细胞的功能和机制分析
  • 批准号:
    10287407
  • 财政年份:
    2021
  • 资助金额:
    $ 88.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了