Enhancing spatial and temporal resolution for isotropic volumetric imaging and 3D cell tracking

增强各向同性体积成像和 3D 细胞跟踪的空间和时间分辨率

基本信息

  • 批准号:
    BB/L018039/1
  • 负责人:
  • 金额:
    $ 17.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Optical microscopy is ubiquitous in biological sciences with fluorescence microscopy in particular being utilised to map specific labelled proteins and/or structures. While the majority of such research is performed on populations of cells growing on glass slides, increasingly there is an appreciation that more realistic environments are required to obtain relevant data on biological processes, and ultimately this means using live biological models. A range of small, optically accessible, organisms (e.g. zebrafish, nematode worms, etc) provide convenient live samples for studying biological processes in vivo. Such samples are inherently three-dimensional (3-D), zebrafish being <1 mm in diameter when under 16 days old, and therefore require 3-D discrimination to provide unambiguous positional/structural information. Most 3-D microscopy is undertaken with laser scanning microscopes that scan a spot of light through the sample, building up a map of fluorescence intensity point by point. Such scanning microscopes are typically optimised for higher magnifications (i.e. small fields of view), suffer from unequal resolution (transverse better than axial) and require significant financial investment (e.g. often >£150K). An alternative method of acquiring 3-D data is optical projection tomography (OPT), the optical equivalent to X-ray computed tomography, which can be implemented on a standard wide-field imaging microscope and can provide 3-D imaging at a fraction of the cost of point scanning systems. In OPT, wide-field images (either fluorescence or transmitted light) of a rotating sample are acquired at different orientations. These images can be used to reconstruct the 3-D distribution of fluorescence/absorption. The standard approach to OPT imposes three key constraints: the requirement that at least the front half of the sample must be 'in focus', that the whole sample must stay in the field of view throughout the acquisition to prevent artefacts in the reconstruction process and that the sample must be non-scattering (i.e. transparent). The first two constraints limit the achievable spatial resolution, since they require the numerical aperture (NA) of imaging system to be small. This limit can be overcome by scanning the imaging lens, and therefore the focal plane, through the rotating sample while acquiring the angularly-resolved images. This produces an 'in focus' image of the whole sample that is superimposed on an out of focus "back-ground" signal that can be removed during image processing. We propose to extend this approach to yet higher resolution imaging of selected sub-volumes within the sample by incorporating a lateral scanning microscope stage to allow the motion of a "volume of interest" (VOI) inside a larger specimen (e.g. an organ) to be maintained in focus as the sample rotates. This VOI can then be modelled as a detailed structure within a larger 'unstructured' volume, to permit high resolution reconstruction without artefacts associated with parts of the sample entering/leaving the field of view. This would permit isotropic high resolution 3-D imaging of, e.g. immune cell distribution in specific organs in live zebrafish, which is currently not possible using the standard commercially available instruments.To address the limits to temporal resolution, we would investigate a novel "orthogonal scanning approach", acquiring sequential images at right-angles with respect to each other, such that the 3-D structure/location of features within the sample could be determined much faster than the rotation period. This could be applied, e.g. to follow cell migration within a live zebrafish. Finally we will extend this system to simultaneously acquire two images at different wavelengths of light using a commercially available spectral image splitter. By analysing these two wavelength channels we will be able to indirectly probe the signalling events that control the immune response and occur within cells.
光学显微镜在生物科学中是普遍存在的,荧光显微镜特别用于绘制特定标记的蛋白质和/或结构。虽然大多数此类研究是在载玻片上生长的细胞群上进行的,但越来越多的人认识到,需要更真实的环境来获得生物过程的相关数据,最终这意味着使用活的生物模型。一系列小的、光学可接近的生物体(例如斑马鱼、蠕虫)为研究体内生物过程提供了方便的活样品。这些样本本质上是三维的(3-D),斑马鱼在16天以下时直径<1 mm,因此需要3-D辨别以提供明确的位置/结构信息。大多数3D显微镜都是使用激光扫描显微镜进行的,激光扫描显微镜可以扫描穿过样本的光点,逐点建立荧光强度图。这种扫描显微镜通常针对更高的放大率(即小视场)进行优化,具有不相等的分辨率(横向优于轴向),并且需要大量的财务投资(例如,通常>£ 150 K)。获取3D数据的另一种方法是光学投影断层扫描(OPT),它是X射线计算机断层扫描的光学等效物,可以在标准的宽视场成像显微镜上实现,并且可以以点扫描系统的一小部分成本提供3D成像。在OPT中,旋转样品的宽视场图像(荧光或透射光)在不同的方向上采集。这些图像可用于重建荧光/吸收的3-D分布。OPT的标准方法施加了三个关键约束:要求至少样品的前半部分必须“对焦”,整个样品必须在整个采集过程中保持在视场中以防止重建过程中的伪影,以及样品必须是非散射的(即透明的)。前两个约束限制了可实现的空间分辨率,因为它们要求成像系统的数值孔径(NA)很小。通过在获取角分辨图像的同时扫描成像透镜并因此扫描焦平面穿过旋转样品,可以克服该限制。这产生了整个样品的“聚焦”图像,该图像叠加在可以在图像处理期间去除的失焦“背景”信号上。我们建议将这种方法扩展到更高分辨率的成像的选定的子体积内的样品,通过合并一个横向扫描显微镜阶段,以允许运动的“感兴趣的体积”(VOI)内的一个较大的标本(例如器官),以保持在焦点作为样品旋转。然后,该VOI可以被建模为更大的“非结构化”体积内的详细结构,以允许高分辨率重建,而没有与进入/离开视场的样本的部分相关联的伪影。这将允许各向同性的高分辨率3-D成像,例如活斑马鱼中特定器官中的免疫细胞分布,这是目前使用标准市售仪器不可能的。为了解决时间分辨率的限制,我们将研究一种新的“正交扫描方法”,以相对于彼此成直角的方式获取序列图像,使得可以比旋转周期快得多地确定样本内特征的3-D结构/位置。这可以应用于例如跟踪活斑马鱼内的细胞迁移。最后,我们将扩展这个系统,同时获得两个图像在不同波长的光使用市售的光谱图像分离器。通过分析这两个波长通道,我们将能够间接探测控制免疫反应和细胞内发生的信号事件。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.
  • DOI:
    10.1371/journal.pone.0136213
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Correia T;Lockwood N;Kumar S;Yin J;Ramel MC;Andrews N;Katan M;Bugeon L;Dallman MJ;McGinty J;Frankel P;French PM;Arridge S
  • 通讯作者:
    Arridge S
Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time.
  • DOI:
    10.1002/jbio.201500258
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Andrews N;Ramel MC;Kumar S;Alexandrov Y;Kelly DJ;Warren SC;Kerry L;Lockwood N;Frolov A;Frankel P;Bugeon L;McGinty J;Dallman MJ;French PM
  • 通讯作者:
    French PM
OPTiM: Optical projection tomography integrated microscope using open-source hardware and software.
  • DOI:
    10.1371/journal.pone.0180309
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Watson T;Andrews N;Davis S;Bugeon L;Dallman MD;McGinty J
  • 通讯作者:
    McGinty J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James McGinty其他文献

Erratum to: Accelerated Gastric Emptying but No Carbohydrate Malabsorption 1 Year After Gastric Bypass Surgery (GBP)
  • DOI:
    10.1007/s11695-013-0965-4
  • 发表时间:
    2013-05-08
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Gary Wang;Keesandra Agenor;Justine Pizot;Donald P. Kotler;Yaniv Harel;Bart J. Van Der Schueren;Iliana Quercia;James McGinty;Blandine Laferrère
  • 通讯作者:
    Blandine Laferrère
Hyperspectral scanning laser optical tomography
  • DOI:
    https://doi.org/10.1002/jbio.201800221
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Lingling Chen;Guiye Li;Li Tang;Meng Zhang;Lina Liu;Ang Liu;James McGinty;Shuangchen Ruan
  • 通讯作者:
    Shuangchen Ruan
Multiplexed Time Lapse Fluorescence Lifetime Readouts in an Optically Sectioning Time-Gated Imaging Microscope
  • DOI:
    10.1016/j.bpj.2010.12.1221
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anca Margineanu;Romain Laine;Sunil Kumar;Clifford Talbot;Sean Warren;Christopher Kimberley;James McGinty;Gordon Kennedy;Alessandro Sardini;Christopher Dunsby;Mark A.A. Neil;Matilda Katan;Paul M.W. French
  • 通讯作者:
    Paul M.W. French
P-26 Laparoendoscopic single-site surgery for sleeve gastrectomy: initial experience
  • DOI:
    10.1016/j.soard.2011.04.027
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Koji Park;John N. Afthinos;James McGinty;Ninan Koshy;Julio Teixeira
  • 通讯作者:
    Julio Teixeira
In Vivo Investigation of Calpain Activity by Lifetime Imaging of Genetically Encoded FRET Sensors
  • DOI:
    10.1016/j.bpj.2011.11.866
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandro Sardini;Daniel W. Stuckey;James McGinty;Romain Laine;Vadim Y. Soloviev;Simon R. Arridge;Dominic J. Wells;Paul M.W. French;Joseph V. Hajnal
  • 通讯作者:
    Joseph V. Hajnal

James McGinty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James McGinty', 18)}}的其他基金

Extreme volumetric imaging using single-shot optical tomography with compressive sensing
使用具有压缩传感功能的单次光学断层扫描进行极限体积成像
  • 批准号:
    EP/V048996/1
  • 财政年份:
    2021
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
考虑外源变量的空间copula插值模型的开发及其在降雨和地下水水质插值上的验证
  • 批准号:
    41101020
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
空间数据不确定性的若干问题研究
  • 批准号:
    40352002
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant
Development of high temporal and spatial resolution multi-beam CT instrument
高时空分辨率多束CT仪器研制
  • 批准号:
    23K28346
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
  • 批准号:
    2335927
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Standard Grant
Spatial and Temporal Airflow Mechanism Regarding Transient Aerodynamics of a Supersonic Aircraft Configuration with a Cranked-Arrow Main Wing
曲柄箭头主翼超音速飞机瞬态空气动力学的时空气流机制
  • 批准号:
    23K04228
  • 财政年份:
    2023
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring Frontiers on applying CubeSat images with very high spatial and temporal resolutions to remotely estimate species-level tree phenology
探索应用具有极高空间和时间分辨率的 CubeSat 图像远程估计物种级树木物候的前沿
  • 批准号:
    23K18517
  • 财政年份:
    2023
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Quantifying spatial and temporal patterns of natural disturbances in forests across Japan: Mapping disturbance regimes by satellite images
量化日本各地森林自然扰动的时空模式:通过卫星图像绘制扰动区域图
  • 批准号:
    23K19303
  • 财政年份:
    2023
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
  • 批准号:
    NE/Y003519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.9万
  • 项目类别:
    Research Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 17.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了