14TSB_DataExpl Crowd-Sourced Prediction of Plant Pest and Disease Occurrence using Mobile Apps

14TSB_DataExpl 使用移动应用程序对植物病虫害发生进行众包预测

基本信息

  • 批准号:
    BB/M006980/1
  • 负责人:
  • 金额:
    $ 10.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Growing Interactive, the industrial lead partner of the project, produces the leading on-line software and apps that gardeners and small-scale farms use to plan the edible crops they grow and achieve increased levels of success. Over a quarter million gardeners and farmers have used their software and apps. They hold a wealth of location-based information on which crops, varieties and quantities gardeners are growing in their location and this year they are extending the recording to include dated observations of pests and diseases on crops (launching May 2014). Event-based journalling has been the most requested new feature for their software and they will be adding social feedback elements to reward reporting.We propose that this data be statistically analysed in conjunction with meteorological information to develop predictive models for pest and disease emergence on crops. By developing advanced map-based visualisations, the vast quantity of crowd-sourced data can be analysed in depth and used to refine predictive models. Meteorological information and weather forecasts can then provide significantly improved pest prediction for growers for the current growing season specific to their location.
该项目的行业领先合作伙伴Growing Interactive生产领先的在线软件和应用程序,园丁和小规模农场使用这些软件和应用程序来规划他们种植的可食用作物,并提高成功率。超过25万园丁和农民使用了他们的软件和应用程序。他们拥有丰富的基于位置的信息,包括园丁在其所在地种植的作物,品种和数量,今年他们正在扩展记录,包括对作物病虫害的日期观察(2014年5月推出)。基于事件的日志一直是他们的软件最需要的新功能,他们将增加社会反馈元素,以奖励reporting.We建议,这些数据进行统计分析,结合气象信息,开发预测模型的病虫害出现的农作物。通过开发先进的基于地图的可视化,可以深入分析大量的众包数据,并用于改进预测模型。然后,气象信息和天气预报可以为种植者提供针对其所在地的当前生长季节的显著改进的害虫预测。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic selection of environmental variables to improve the prediction of aphid phenology: A machine learning approach
  • DOI:
    10.1016/j.ecolind.2017.10.032
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Holloway, Paul;Kudenko, Daniel;Bell, James R.
  • 通讯作者:
    Bell, James R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Kudenko其他文献

Hybrid pathfinding optimization for the Lightning Network with Reinforcement Learning
基于强化学习的闪电网络混合路径寻找优化
Adversarial Robustness of Neural Networks From the Perspective of Lipschitz Calculus: A Survey
从 Lipschitz 微积分的角度来看神经网络的对抗鲁棒性:一项调查
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Monty;Daniel Kudenko
  • 通讯作者:
    Daniel Kudenko
How Real Is Real? A Human Evaluation Framework for Unrestricted Adversarial Examples
真实有多真实?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dren Fazlija;Arkadij Orlov;Johanna Schrader;Monty;Michael Rohs;Daniel Kudenko
  • 通讯作者:
    Daniel Kudenko
Reducing CO<sub>2</sub> emissions in a peer-to-peer distributed payment network: Does geography matter in the lightning network?
  • DOI:
    10.1016/j.comnet.2024.110297
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Danila Valko;Daniel Kudenko
  • 通讯作者:
    Daniel Kudenko
A Reinforcement Learning Based Auto-Scaling Approach for SaaS Providers in Dynamic Cloud Environment
动态云环境中 SaaS 提供商基于强化学习的自动扩展方法
  • DOI:
    10.1155/2019/5080647
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Wei;Daniel Kudenko;Shijun Liu;Li Pan;Lei Wu;Xiangxu Meng
  • 通讯作者:
    Xiangxu Meng

Daniel Kudenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
  • 批准号:
    2332339
  • 财政年份:
    2024
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
IMR: MT: xGTracker -- Mobile xG Performance Monitoring and Data Collection Platform to Enable Large-Scale Crowd-Sourced Measurement
IMR:MT:xGTracker——移动 xG 性能监控和数据收集平台,支持大规模众包测量
  • 批准号:
    2323174
  • 财政年份:
    2023
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
CAS-Climate: Crowd-Sourced Just-in-Time Inlet Maintenance as an Urban Strategy for Climate Resilience
CAS-气候:众包及时入口维护作为气候适应能力的城市战略
  • 批准号:
    2141192
  • 财政年份:
    2022
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Standard Grant
A Crowd Sourced Anti-Counterfeiting Imaging AI platform (ACACIA)
众包防伪成像人工智能平台(ACACIA)
  • 批准号:
    91580
  • 财政年份:
    2021
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Collaborative R&D
Crowd-Sourced Traffic Data: Predicting Air Pollution & Ischemic Stroke
众包交通数据:预测空气污染
  • 批准号:
    10364079
  • 财政年份:
    2021
  • 资助金额:
    $ 10.68万
  • 项目类别:
Crowd-Sourced Online Nexus for Developing Assessments of Middle-school Physical Science Disciplinary Core Ideas
用于开发中学物理科学学科核心思想评估的众包在线关系
  • 批准号:
    2101493
  • 财政年份:
    2021
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Continuing Grant
Advancing method benchmarking and data sharing through crowd-sourced competitions in cancer research
通过癌症研究中的众包竞赛推进方法基准测试和数据共享
  • 批准号:
    10188471
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
Advancing method benchmarking and data sharing through crowd-sourced competitions in cancer research
通过癌症研究中的众包竞赛推进方法基准测试和数据共享
  • 批准号:
    10661524
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
Advancing method benchmarking and data sharing through crowd-sourced competitions in cancer research
通过癌症研究中的众包竞赛推进方法基准测试和数据共享
  • 批准号:
    10438572
  • 财政年份:
    2020
  • 资助金额:
    $ 10.68万
  • 项目类别:
YOUR.VU.CITY- Developing dataflows between a crowd-sourced, building attribute data platform and 3D rendering for enhanced public engagement in built environment planning
YOUR.VU.CITY - 在众包建筑属性数据平台和 3D 渲染之间开发数据流,以增强公众对建筑环境规划的参与
  • 批准号:
    105325
  • 财政年份:
    2019
  • 资助金额:
    $ 10.68万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了