Combinatorial genome editing to create enhanced biomanufacturing platforms

组合基因组编辑创建增强的生物制造平台

基本信息

  • 批准号:
    BB/M01701X/1
  • 负责人:
  • 金额:
    $ 54.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will enhance the manufacture of innovative medicines, allowing for more predictable routes to success and, with added certainty, enable the production of life-changing medicines more rapidly and cheaply with valuable consequences to patients and the economy. The focus is on improvement of the systems used to make medicines built from the knowledge of natural molecules, proteins, that are potent agents for the treatment of otherwise untreatable diseases. The molecules, often referred to as biopharmaceuticals (or biotherapeutics or biologics) are represented by insulin, a polymer of smaller components (amino acids) linked into a defined order by the genetic code in cells of the pancreas. The life-changing consequences of insulin in the treatment of diabetes is universally understood however it presents but one of many biopharmaceuticals that have been, are being/will be, made to treat diseases such as cancers (e.g Avastin), blood clotting disorders (e.g Factor VIII) or Rheumatoid arthritis (e.g Remicade). Each of these medicines is made by genetic engineering and they are synthesised by mammalian cells in fermenters. The research and safety validation of medicines of such wonderful potential is prolonged and costly but the rewards, for patients, society and economy are immense. Biopharmaceuticals dominate the pharmaceutical marketplace and in 2013, 7 of the top 10 selling drugs were biopharamcetuicals with combined sales of $58 billion. Potential rewards are immense but equally the investment is significant and consequently the cost to the patient and health agencies is high. There is a desire to make the route to market easier and less susceptible failure, to bring down the cost of manufacture and, hence, treatment. This situation is complicated by the development of new forms of biopharmaceuticals - molecules designed to be more specific, selective. potent and effective in treating diseases that until now have been untreatable. Many such biopharmaceuticals can be designed (for "theoretical" manufacture) but cannot be produced (or are produced poorly) by cells currently in industrial use. This presents the challenge to be addressed in the current project - making a new version of the cell used to manufacture the majority of the emerging biopharmaceuticals. The approach is novel, exciting and offers the potential to alter what is possible in the commercial production of biopharmaceuticals. The cell we will engineer into a new manufacturing platform is the Chinese Hamster Ovary (CHO) cell. Estimates suggest that 900 biopharmaceuticals are currently in clinical trials and 70% are being made in CHO cells, The project brings together three distinct groups with strong and complentary skills to make this project occur. Firstly, Professor Alan Dickson (University of Manchester) has defined aspects of the CHO cell that can be altered to increase the efficency and certainty of production of biopharmaceuticals. These targets are associated with shortening the time it takes for CHO cells to reach manufacturing scale and enabling cells to make non-natural products (for production of the next generation of biopharmaceuticals). Horizon Discovery has built the technologies to add and/or remove multiple genes from cells, a technology that permits CHO cells to be genetically engineered to re-set the CHO cell to the more desirable version defined by the studies of Professor Dickson. The Horizon approach will enable multiple changes to be made to CHO cells, in combinations, to develop a toolbox of subtly-different cell versions to address the challenges presented by the many new biopharmaceuticals at research stage. Finally, the National Biologics Manufacturing Centre will take CHO cells engineered for enhanced performance and define the potential of the toolbox of CHO cells to support real-life manufacturing potential at commercial maunfactruing scale. A strong team to take the hypothesis to reality to manufacture.
该项目将加强创新药物的生产,使成功之路更加可预测,并更加确定地使改变生活的药物的生产更加迅速和廉价,对患者和经济产生宝贵的影响。重点是改进用于制造药物的系统,这些药物是根据天然分子,蛋白质的知识建立的,这些分子是治疗其他无法治疗的疾病的有效药物。这些分子通常被称为生物药物(或生物治疗剂或生物制剂),以胰岛素为代表,胰岛素是一种由胰腺细胞中的遗传密码连接成一个确定顺序的较小组分(氨基酸)的聚合物。胰岛素在糖尿病治疗中改变生活的后果是普遍理解的,但是它呈现了许多生物药物之一,这些生物药物已经,正在/将要用于治疗疾病,如癌症(例如阿瓦斯丁),凝血障碍(例如因子VIII)或风湿性关节炎(例如类克)。这些药物都是通过基因工程制造的,它们是由哺乳动物细胞在发酵罐中合成的。对具有如此巨大潜力的药物的研究和安全性验证是长期的,成本高昂,但对患者,社会和经济的回报是巨大的。生物制药主导着制药市场,2013年,前10大销售药物中有7种是生物制药,总销售额为580亿美元。潜在的回报是巨大的,但同样的投资也是巨大的,因此病人和卫生机构的成本也很高。人们希望使进入市场的途径更容易和更不易发生故障,以降低制造成本,从而降低治疗成本。这种情况由于新形式的生物药物的发展而变得复杂-分子被设计成更具体,更有选择性。在治疗迄今无法治愈的疾病方面是有效的。许多这样的生物药物可以设计(用于“理论”制造),但不能由目前工业使用的细胞生产(或生产不良)。这提出了当前项目中要解决的挑战-制造用于制造大多数新兴生物药物的新版本的细胞。这种方法是新颖的,令人兴奋的,并提供了改变生物制药商业生产的潜力。我们将在新的制造平台上设计的细胞是中国人卵巢(CHO)细胞。据估计,目前有900种生物药物正在进行临床试验,其中70%是在CHO细胞中生产的,该项目汇集了三个具有强大和互补技能的不同团队,使该项目得以实现。首先,Alan Dickson教授(曼彻斯特大学)已经定义了CHO细胞的一些方面,这些方面可以被改变以提高生物药物生产的效率和确定性。这些目标与缩短CHO细胞达到生产规模所需的时间以及使细胞能够制造非天然产品(用于生产下一代生物药物)有关。Horizon Discovery已经建立了从细胞中添加和/或去除多个基因的技术,该技术允许CHO细胞进行基因工程,以将CHO细胞重新设置为Dickson教授的研究所定义的更理想的版本。Horizon方法将能够对CHO细胞进行多种组合改变,以开发一个由细微不同的细胞版本组成的工具箱,以应对许多新生物制药在研究阶段提出的挑战。最后,国家生物制品制造中心将采用经改造以增强性能的CHO细胞,并确定CHO细胞工具箱的潜力,以支持商业制造规模的实际制造潜力。一个强大的团队把假设变成现实去制造。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell Culture Engineering: Recombinant Protein Production
细胞培养工程:重组蛋白生产
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaffney CE
  • 通讯作者:
    Gaffney CE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Dickson其他文献

Ring chromosomes in a retroperitoneal lipoma of childhood
儿童腹膜后脂肪瘤的环状染色体
  • DOI:
    10.1002/gcc.2870040114
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    E. Mitchell;A. Kelsey;Gordon Armstrong;Alan Dickson
  • 通讯作者:
    Alan Dickson
From Discovery to Delivery: A Rapid and Targeted Proteomics Workflow for Monitoring Chinese Hamster Ovary Biomanufacturing
从发现到交付:用于监测中国仓鼠卵巢生物制造的快速且有针对性的蛋白质组学工作流程
  • DOI:
    10.1016/j.mcpro.2025.101011
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Charles Eldrid;Ellie Hawke;Kathleen M. Cain;Kate Meeson;Joanne Watson;Reynard Spiess;Luke Johnston;William Smith;Matthew Russell;Robyn Hoare;John Raven;Jean-Marc Schwartz;Magnus Rattray;Leon Pybus;Alan Dickson;Andrew Pitt;Perdita Barran
  • 通讯作者:
    Perdita Barran

Alan Dickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Dickson', 18)}}的其他基金

An integrated cell and protein engineering approach to generate enhanced CHO cell platforms for manufacture of difficult to express biopharmaceuticals
一种集成的细胞和蛋白质工程方法,用于生成增强的 CHO 细胞平台,用于制造难以表达的生物制药
  • 批准号:
    BB/R002096/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
Production of difficult to express essential bacterial proteins
生产难以表达的必需细菌蛋白
  • 批准号:
    BB/P004237/1
  • 财政年份:
    2016
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
Cuba: Application of 'omics in the metabolic study of high cell density continuous cell cultures of recombinant NS0 myeloma cell lines
古巴:“组学”在重组 NS0 骨髓瘤细胞系高细胞密度连续细胞培养物代谢研究中的应用
  • 批准号:
    BB/N022041/1
  • 财政年份:
    2016
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
Integration of academic perspective into the scale-up of CHO cell bioprocessing: Manufacturing understanding
将学术观点融入 CHO 细胞生物加工规模化:制造理解
  • 批准号:
    BB/N004000/1
  • 财政年份:
    2015
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
13 ERA IB: Investigating NOvel VAluable bio-Therapeutics and Expression systems
13 ERA IB:研究新颖有价值的生物治疗和表达系统
  • 批准号:
    BB/M001164/1
  • 财政年份:
    2014
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
Application of single cell metabolite profiling to optimisation of stem cell bioprocessing
单细胞代谢物分析在干细胞生物加工优化中的应用
  • 批准号:
    BB/K011170/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant
Application of metabolomics profiling of recombinant mammalian cells to bioprocess design
重组哺乳动物细胞代谢组学分析在生物工艺设计中的应用
  • 批准号:
    BB/E005985/1
  • 财政年份:
    2007
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Research Grant

相似国自然基金

激活SENP1-Sirt3轴改善线粒体健康对延缓衰老的作用与机制研究
  • 批准号:
    92049113
  • 批准年份:
    2020
  • 资助金额:
    60.0 万元
  • 项目类别:
    重大研究计划
小鼠Pold4介导的基因组稳定性在肺癌发生发展中的功能和机制研究
  • 批准号:
    31900512
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
DNA损伤诱导的KIFC1磷酸化介导肿瘤耐药和复发的机制及策略研究
  • 批准号:
    31970720
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
果蝇新基因dNKAP调控R-loop水平和基因组稳定性的分子机制及其在肿瘤发生中的功能研究
  • 批准号:
    31970668
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
KLF14翻译后修饰及其在调控肿瘤细胞死亡中的作用研究
  • 批准号:
    31970736
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
XPF蛋白的乙酰化修饰在DNA损伤修复中的功能与作用机制研究
  • 批准号:
    31970664
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
有丝分裂检查点激酶对遗传稳定性的维持及其在癌症中的失调
  • 批准号:
    31871361
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
动点微管相关蛋白SKAP磷酸化在食管癌发生发展中的分子调控机制及临床意义探究
  • 批准号:
    31801142
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
miR-1193和DNA-PKcs协同致死脑胶质瘤细胞分子机制研究
  • 批准号:
    31701179
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
泛素连接酶UBR5介导的FANCD2蛋白降解在范可尼贫血通路中的作用及机制
  • 批准号:
    31701180
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-throughput Functional Dissection of PCNA Modifications that Promote Genome Stability in Human Cells
促进人类细胞基因组稳定性的 PCNA 修饰的高通量功能解析
  • 批准号:
    490220
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Operating Grants
Genome targeting by highly accurate design of Zinc Fingers to enable novel therapeutics and research tools
通过高度精确的锌指设计进行基因组靶向,以实现新型疗法和研究工具
  • 批准号:
    479699
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Operating Grants
Designing broad-range plant virus resistance using a function-conserving precise genome editing scheme
使用功能保留的精确基因组编辑方案设计广泛的植物病毒抗性
  • 批准号:
    23KK0111
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Protein Chemistry
蛋白质化学
  • 批准号:
    10552380
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Prime editing for Crumbs homologue 1 (CRB1) Inherited Retinal Dystrophies
Crumbs 同源物 1 (CRB1) 遗传性视网膜营养不良的 Prime 编辑
  • 批准号:
    10636325
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Functional consequences of intergenic autoimmune disease risk variants
基因间自身免疫性疾病风险变异的功能后果
  • 批准号:
    10655161
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Extracellular vesicles encapsulating CRISPR machinery for treatment of SARS-CoV-2 infection
封装 CRISPR 机制的细胞外囊泡用于治疗 SARS-CoV-2 感染
  • 批准号:
    10655147
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
Etiology and pathogenesis of lethal lung developmental disorders in neonates
新生儿致命性肺发育障碍的病因和发病机制
  • 批准号:
    10660107
  • 财政年份:
    2023
  • 资助金额:
    $ 54.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了