Analysing how auxin dynamics control root phenotype
分析生长素动力学如何控制根表型
基本信息
- 批准号:BB/M019837/1
- 负责人:
- 金额:$ 56.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The hormone auxin affects many aspects of plant growth. In the plant root, auxin affects how quickly the root grows, orients the root tip to grow downwards and determines when a new root branch will grow from the main root. Therefore, auxin controls the form of the whole root system, which affects how easily roots can take-up water and nutrients from the soil and how securely roots anchor the plant in the ground. To control the growth, bending and branching of the root, the amount of auxin within each cell varies both between different cells and over time. The plant controls the auxin distribution by positioning different proteins and channels on the cell membranes, which affect how quickly auxin can get into and out of each cell. It is hard to predict how the amount of each protein/channel on each cell membrane affects the overall auxin distribution within the root tip. In this project, we will make and test mathematical models to investigate how the proteins/channels on the cell membranes affect the auxin distribution. We will then use these models to understand how auxin controls root growth, bending and branching.To create an accurate model of auxin transport, we will first image cell geometries and the distributions of the proteins/channels on the cell membranes. Using this information, we will write down a mathematical description of how auxin moves into and out of each cell to form a mathematical model. We will then simulate and analyse the mathematical model to predict the auxin distribution within the plant root. In order to maximise the knowledge gained, we will use a range of mathematical techniques to produce different types of model, each having different advantages and being amenable to different types of analysis. We will then carefully compare the model results with experimental data. Because auxin is very small, we are unable to measure the amount of auxin within each cell and it is hard to measure the rate of auxin transport across cell membranes. We will therefore make use of fluorescent proteins that are degraded by auxin to collect data with which to test the models. We will carry out a range of experiments to thoroughly test the models, for example, considering roots in which certain proteins are not functional, or when auxin has been supplied to the root. In the event that the model predictions and data do not agree, we will use the models to develop new hypotheses and identify which new experiment would best test these. The modelling will therefore motivate new experiments, the results of which will lead to improved models, and we will move around what is known as the 'model-experimental' loop.The project will improve our understanding of how auxin controls the plant root system by controlling the growth, bending and branching of the root. Determining what controls auxin dynamics in the plant root will provide us with knowledge of how to manipulate plant roots. In the longer term, this knowledge will lead to the development of crops with roots that are better suited to their environmental conditions, which will significantly improve crop yields. In addition, the project will produce rigorous mathematical models which will be analysed and tested using a wide range of techniques. These models and techniques could be applied to understand other biological questions and so will also be beneficial to future research.
激素生长素影响植物生长的许多方面。在植物的根中,生长素影响根的生长速度,引导根尖向下生长,并决定何时从主根长出新的根分支。因此,生长素控制着整个根系的形态,从而影响到根部从土壤中吸收水分和养分的难易程度,以及根部如何安全地将植物固定在地面上。为了控制根的生长、弯曲和分枝,每个细胞内的生长素的量在不同的细胞之间和随着时间的推移而变化。植物通过在细胞膜上定位不同的蛋白质和通道来控制生长素的分布,这会影响生长素进入和离开每个细胞的速度。很难预测每个细胞膜上的每个蛋白质/通道的数量如何影响根尖内生长素的总体分布。在这个项目中,我们将建立和测试数学模型来研究细胞膜上的蛋白质/通道如何影响生长素的分布。然后我们将使用这些模型来了解生长素如何控制根的生长、弯曲和分枝。为了创建生长素运输的准确模型,我们将首先成像细胞几何形状和细胞膜上蛋白质/通道的分布。利用这些信息,我们将写下生长素如何进出每个细胞的数学描述,以形成一个数学模型。然后,我们将模拟和分析数学模型,以预测生长素在植物根中的分布。为了最大限度地利用所获得的知识,我们将使用一系列数学技术来生成不同类型的模型,每个模型具有不同的优势,并适用于不同类型的分析。然后我们将仔细地将模型结果与实验数据进行比较。由于生长素非常小,我们无法测量每个细胞内生长素的数量,也很难测量生长素跨细胞膜的转运速度。因此,我们将利用被生长素降解的荧光蛋白来收集数据,用来测试这些模型。我们将进行一系列实验来彻底测试这些模型,例如,考虑某些蛋白质不起作用的根,或者生长素已经供应给根。在模型预测和数据不一致的情况下,我们将使用模型来开发新的假设,并确定哪个新实验将最好地测试这些假设。因此,建模将激发新的实验,其结果将导致改进的模型,我们将绕过被称为“模型-实验”的循环。该项目将提高我们对生长素如何通过控制根的生长、弯曲和分枝来控制植物根系的理解。确定是什么控制了植物根中的生长素动态,这将为我们提供如何操纵植物根的知识。从长远来看,这一知识将导致根部更适合其环境条件的作物的发展,这将显著提高作物产量。此外,该项目将产生严格的数学模型,这些模型将使用各种技术进行分析和测试。这些模型和技术可以应用于理解其他生物学问题,因此也将有利于未来的研究。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat
- DOI:10.1016/s2095-3119(21)63700-0
- 发表时间:2022-03-15
- 期刊:
- 影响因子:4.8
- 作者:Griffiths, Marcus;Atkinson, Jonathan A.;Wells, Darren M.
- 通讯作者:Wells, Darren M.
Plasmodesmata play a key role in leaf vein patterning.
- DOI:10.1371/journal.pbio.3001806
- 发表时间:2022-09
- 期刊:
- 影响因子:9.8
- 作者:
- 通讯作者:
Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy.
- DOI:10.1093/plphys/kiab503
- 发表时间:2022-01-20
- 期刊:
- 影响因子:7.4
- 作者:Kümpers BMC;Han J;Vaughan-Hirsch J;Redman N;Ware A;Atkinson JA;Leftley N;Janes G;Castiglione G;Tarr PT;Pyke K;Voß U;Wells DM;Bishopp A
- 通讯作者:Bishopp A
The Virtual Root : Mathematical Modeling of Auxin Transport in the Arabidopsis Root Tip Using the Open-Source Software SimuPlant.
虚拟根:使用开源软件 SimuPlant 对拟南芥根尖中的生长素运输进行数学建模。
- DOI:10.1007/978-1-0716-1816-5_8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Collis H
- 通讯作者:Collis H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leah Band其他文献
Leah Band的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leah Band', 18)}}的其他基金
Size Matters: A systems approach to understanding cell size control in a developing multicellular tissue
尺寸很重要:一种了解发育中多细胞组织中细胞尺寸控制的系统方法
- 批准号:
BB/S001190/1 - 财政年份:2019
- 资助金额:
$ 56.24万 - 项目类别:
Research Grant
Rhizo-Rice: a novel ideotype for deeper roots and improved drought tolerance
根稻:一种可以加深根系并提高耐旱性的新型表型
- 批准号:
BB/N013697/1 - 财政年份:2016
- 资助金额:
$ 56.24万 - 项目类别:
Research Grant
相似海外基金
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 56.24万 - 项目类别:
Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 56.24万 - 项目类别:
Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 56.24万 - 项目类别:
Studentship
Take Me and Make It Happen! How-to Books from the Ferguson Collection Glasgow, and Corresponding Holdings at the Herzog August Bibliothek Wolfenbüttel
带我去实现它!
- 批准号:
AH/Y007522/1 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Research Grant
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
- 批准号:
DP240102450 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Early Career Researcher Award
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
- 批准号:
DE240100327 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Research Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
- 批准号:
EP/Z000610/1 - 财政年份:2024
- 资助金额:
$ 56.24万 - 项目类别:
Research Grant