Bilateral NSF/BIO-BBSRC - Translational landscape to link cell growth with proliferation in the root meristem
双边 NSF/BIO-BBSRC - 将细胞生长与根分生组织增殖联系起来的转化景观
基本信息
- 批准号:BB/M025047/1
- 负责人:
- 金额:$ 74.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our life depends on growing plants. Projected population increases together with anticipated disruptions to agricultural production by climate change create a pressing need to achieve step-change improvements in agricultural production to guarantee security of global food supplies. Increases in the application of nitrogen fertilizers underpinned the "green revolution" but are unsustainable. Work described in this proposal will contribute to an alternative route to increased agricultural production, which could be described as a "second green revolution". According to this strategy, agricultural productivity is increased through use of crops in which growth responses are optimized to sustain the increase in biomass in what would otherwise be limiting environments. Plant growth fundamentally depends on maintaining growth and proliferation of cells, which occurs in the meristems. The rate of cell production must be aligned with developmental cues, available energy, nutrient supplies and environmental conditions. Cytoplasmic growth in meristematic cells is largely constrained by protein synthesis and is coupled to cell division to maintain cell size homeostasis. There are evolutionarily conserved sensing and intracellular signalling mechanisms that inform cells on the available nutrient supply. Central to this is the so called TARGET OF RAPAMYCIN (TOR) protein, so named after an antifungal compound produced by a bacterium that was discovered in the Easter Island, Rapa Nui. TOR is central for cell growth mainly through the regulation of protein synthesis and connecting protein synthesis and cell proliferation, but these regulatory mechanisms are not well understood in plant cells. TOR is a master regulator and also functions through other output pathways. One main route of TOR function is through stimulating ribosomes to increase the translational capacity of cells for protein synthesis. Recent findings unexpectedly show that a canonical ribosomal protein target also functions as a transcriptional regulator (repressor). We found that this is in association with a key controller of the cell cycle, the RETINOBLASTOMA RELATED (RBR) protein, named after the cancer in the eye when mutated in humans. RBR and its partner proteins are thought to constitute a switch that controls cell proliferation and cell growth and can be flicked by environmental conditions. In this project we shall use root meristematic cells to systematically uncover transcriptionally and translationally regulated genes that function to connect cell growth and proliferation. We will then design experiments through which we can precisely observe the molecular behaviour of the components of the switch in time, as we alter the growth conditions, while at the same time following changes in growth through microscopic movies. These types of experiments will produce a wealth of data that allow building a comprehensive knowledge of the regulatory network. With additional help from carefully optimized computer models, we can learn the functioning of this cellular decision making circuitry and make predictions at different environmental and nutrient conditions what is the extent of cell proliferation and therefore root growth. Having achieved to construct such a predictive model we will test its performance in different real life situations, such as what happens to root growth in dark, or under limited nitrate or sucrose. We might also find that we missed some components, and this will prompt us for further experimentation. Having perfected the model we can start adapting it to other growth-altering conditions, such as stress, or to other parts of the plant important for crop yield, such as fruits or seeds.
我们的生活依赖于种植植物。预计人口将增加,加上气候变化预计会破坏农业生产,因此迫切需要逐步改善农业生产,以保障全球粮食供应安全。氮肥施用量的增加是“绿色革命”的基础,但这是不可持续的。本提案中所述的工作将有助于找到一条增加农业生产的替代途径,这可以被称为“第二次绿色革命”。根据这一战略,农业生产力是通过使用作物来提高的,在这些作物中,生长反应得到优化,以在否则会受到限制的环境中维持生物量的增加。植物的生长从根本上取决于细胞的生长和增殖,而细胞的生长和增殖发生在分生组织中。细胞生产的速率必须与发育线索、可用能量、营养供应和环境条件保持一致。分生组织细胞中的细胞质生长在很大程度上受到蛋白质合成的限制,并与细胞分裂偶联以维持细胞大小的稳态。存在进化上保守的传感和细胞内信号传导机制,其告知细胞可用的营养供应。其核心是所谓的RAPAMYCIN(TOR)蛋白质的目标,以复活节岛Rapa Nui发现的细菌产生的抗真菌化合物命名。TOR主要通过调节蛋白质合成并连接蛋白质合成和细胞增殖来对细胞生长起核心作用,但这些调节机制在植物细胞中还不清楚。TOR是一个主调节器,也通过其他输出路径发挥作用。TOR功能的一个主要途径是通过刺激核糖体来增加细胞蛋白质合成的翻译能力。最近的研究结果出乎意料地表明,一个典型的核糖体蛋白靶也作为一个转录调节因子(阻遏物)。我们发现,这与细胞周期的关键控制器视网膜母细胞瘤相关(RBR)蛋白有关,该蛋白以人类眼睛中的癌症突变命名。RBR及其伴侣蛋白被认为构成了控制细胞增殖和细胞生长的开关,并且可以通过环境条件来触发。在这个项目中,我们将使用根分生组织细胞系统地揭示转录和转录调控基因的功能,连接细胞生长和增殖。然后,我们将设计实验,通过这些实验,我们可以在改变生长条件时及时精确地观察开关组分的分子行为,同时通过显微镜电影跟踪生长的变化。这些类型的实验将产生丰富的数据,使人们能够全面了解监管网络。通过仔细优化的计算机模型的额外帮助,我们可以了解这种细胞决策电路的功能,并在不同的环境和营养条件下预测细胞增殖的程度,从而预测根系生长。在构建了这样一个预测模型之后,我们将在不同的真实的生活情况下测试其性能,例如在黑暗中或在有限的硝酸盐或蔗糖下根的生长会发生什么。我们还可能发现我们遗漏了一些组件,这将促使我们进行进一步的实验。在完善了模型之后,我们可以开始使其适应其他改变生长的条件,如压力,或对作物产量重要的植物其他部分,如水果或种子。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A method for comparing multiple imputation techniques: A case study on the U.S. national COVID cohort collaborative.
- DOI:10.1016/j.jbi.2023.104295
- 发表时间:2023-03
- 期刊:
- 影响因子:4.5
- 作者:Casiraghi, Elena;Wong, Rachel;Hall, Margaret;Coleman, Ben;Notaro, Marco;Evans, Michael D.;Tronieri, Jena S.;Blau, Hannah;Laraway, Bryan;Callahan, Tiffany J.;Chan, Lauren E.;Bramante, Carolyn T.;Buse, John B.;Moffitt, Richard A.;Sturmer, Til;Johnson, Steven G.;Shao, Yu Raymond;Reese, Justin;Robinson, Peter N.;Paccanaro, Alberto;Valentini, Giorgio;Huling, Jared D.;Wilkins, Kenneth J.
- 通讯作者:Wilkins, Kenneth J.
Combining interactomes from multiple organisms: A case study on human-mouse
结合多种生物体的相互作用组:人鼠案例研究
- DOI:10.1109/clei.2016.7833324
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Caceres J
- 通讯作者:Caceres J
A network medicine approach to quantify distance between hereditary disease modules on the interactome.
- DOI:10.1038/srep17658
- 发表时间:2015-12-03
- 期刊:
- 影响因子:4.6
- 作者:Caniza H;Romero AE;Paccanaro A
- 通讯作者:Paccanaro A
Mining the biomedical literature to predict shared drug targets in DrugBank
- DOI:10.1109/clei.2017.8226376
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Horacio Caniza;Diego Galeano;A. Paccanaro
- 通讯作者:Horacio Caniza;Diego Galeano;A. Paccanaro
Additional file 1 of LUMI-PCR: an Illumina platform ligation-mediated PCR protocol for integration site cloning, provides molecular quantitation of integration sites
LUMI-PCR 的附加文件 1:用于整合位点克隆的 Illumina 平台连接介导的 PCR 方案,提供整合位点的分子定量
- DOI:10.6084/m9.figshare.11805027
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dawes J
- 通讯作者:Dawes J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laszlo Bogre其他文献
Laszlo Bogre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laszlo Bogre', 18)}}的其他基金
The role of the E2F transcription factors in regulating stem cell functions during Arabidopsis root development
E2F转录因子在拟南芥根发育过程中调节干细胞功能的作用
- 批准号:
BB/D017599/1 - 财政年份:2006
- 资助金额:
$ 74.39万 - 项目类别:
Research Grant
相似国自然基金
SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
- 批准号:82071300
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
- 批准号:31981220281
- 批准年份:2019
- 资助金额:2.3 万元
- 项目类别:国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
- 批准号:
- 批准年份:2019
- 资助金额:2 万元
- 项目类别:国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
- 批准号:
- 批准年份:2019
- 资助金额:2.6 万元
- 项目类别:国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
- 批准号:81981220037
- 批准年份:2019
- 资助金额:2.1 万元
- 项目类别:国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
- 批准号:
- 批准年份:2019
- 资助金额:1.2 万元
- 项目类别:国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
- 批准号:31671397
- 批准年份:2016
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
- 批准号:
1917263 - 财政年份:2019
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
- 批准号:
1758081 - 财政年份:2017
- 资助金额:
$ 74.39万 - 项目类别:
Continuing Grant
Bilateral NSF/BIO-BBSRC:A Metagenomics Exchange - enriching analysis by synergistic harmonisation of MG-RAST and the EBI Metagenomics Portal
双边 NSF/BIO-BBSRC:宏基因组学交流 - 通过 MG-RAST 和 EBI 宏基因组学门户的协同协调丰富分析
- 批准号:
BB/N018354/1 - 财政年份:2017
- 资助金额:
$ 74.39万 - 项目类别:
Research Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Synthetic Biology for Lignin Utilization
合作研究:双边 BBSRC-NSF/BIO:木质素利用的合成生物学
- 批准号:
1614953 - 财政年份:2016
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Regulation of plant stomatal aperture by SAUR (Small Auxin Up RNA) proteins
合作研究:双边 BBSRC-NSF/BIO:SAUR(小生长素 Up RNA)蛋白调节植物气孔孔径
- 批准号:
1613809 - 财政年份:2016
- 资助金额:
$ 74.39万 - 项目类别:
Continuing Grant
Bilateral BBSRC-NSF/BIO: Causal modeling of T cell signaling in time and space
双边 BBSRC-NSF/BIO:T 细胞信号传导在时间和空间上的因果模型
- 批准号:
1616492 - 财政年份:2016
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC- Remodelling Replication Roadblocks: Regulatory Systems that Integrate DNA Replication, Recombination and Protein Modification
双边 NSF/BIO-BBSRC-重塑复制障碍:整合 DNA 复制、重组和蛋白质修饰的监管系统
- 批准号:
1642283 - 财政年份:2016
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
- 批准号:
1644745 - 财政年份:2016
- 资助金额:
$ 74.39万 - 项目类别:
Standard Grant