Bio-methane production from urban organic matter

利用城市有机物生产生物甲烷

基本信息

  • 批准号:
    BB/M025691/1
  • 负责人:
  • 金额:
    $ 40.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Anaerobic biological treatments can be used for stabilisation of the sludge produced in water and wastewater purification, in solid waste degradation and in the treatment of high-strength industrial effluents. The degradation of organic matter in anaerobic conditions has the following advantages over aerobic degradation: - It does not require an oxygen supply and consequently has a lower energy demand. - Sludge production is reduced by >90%, with lower in operational costs and environmental impacts. - It produces biogas (composed mainly of CH4 and CO2) which is a valuable renewable biofuel. In the design of these systems consideration must be given to the fact that slower-growing microorganisms may be washed out during high-rate treatment of liquid effluents. New techniques based on the utilisation of membranes to keep microorganisms in the system can overcome this limitation. This configuration is referred to as a membrane bioreactor (MBR) and combines two functions: biological degradation by the retained microorganisms, and solids separation in which the treated effluent is separated from the suspended solids and microorganisms responsible for degradation. The MBR ensures the production of high-quality effluent as a high concentration of microorganisms can be maintained; this has the further potential advantage that it may allow wastewater treatment even at lower operating temperatures. Use of membranes also allows the retention of species that have become adapted to particular wastewater types, including those that contain persistent pollutants that would otherwise not be easily degraded. It is clear that membrane systems are one of the most promising technologies in wastewater treatment. The application of MBRs for aerobic treatment is increasing, due to the development of membranes that are able to work at high permeate flow rates, and the production of more compact, cheaper and exchangeable membrane modules. Despite these advances, however, membrane technologies also have several important drawbacks which hold back their wider application. The main issues are investment and operating costs: both of which are closely linked to operational problems such as membrane fouling, which limits the maximum flow rate that can be achieved. Methods to reduce membrane fouling include gas recirculation and back-flushing, both of which consume considerable amounts of energy, reducing the potential energy gains from an anaerobic system. Gas scouring is also not completely effective, and it may be necessary periodically to remove the membrane from the reactor for chemical cleaning. This has implications for operating costs, and continual use of chemical agents may affect the membrane lifespan and separation efficiency, making it highly desirable to reduce the frequency of this type of cleaning. A key aspect of the current research is therefore to develop and test alternative methods of membrane cleaning. The work carried out by the University of Southampton will specifically investigate the use of purpose-designed support particles which encourage the growth of microbial biomass while also providing a mildly abrasive cleaning action. This will be coupled with the application of low-intensity ultrasound, based on adaptation of the StarStream technology developed at the University, which has already won a series of major awards for innovation. StarStream uses low-intensity ultrasound and micro-bubbles in a stream of low-pressure water, and is effective at cleaning a variety of surface and fouling types. The combination of these two approaches may have synergetic effects on reactor performance allowing higher flux rates to be achieved with lower energy usage.
厌氧生物处理可用于稳定水和废水净化、固体废物降解和高浓度工业废水处理中产生的污泥。在厌氧条件下降解有机物比有氧降解具有以下优点:-它不需要氧气供应,因此具有较低的能量需求。- 污泥产量减少90%以上,运营成本和环境影响更低。- 它产生沼气(主要由CH 4和CO2组成),这是一种有价值的可再生生物燃料。在这些系统的设计中,必须考虑到这样一个事实,即在液体流出物的高速处理过程中,生长较慢的微生物可能会被冲洗掉。基于利用膜将微生物保持在系统中的新技术可以克服这一限制。这种配置被称为膜生物反应器(MBR),并结合了两个功能:通过保留的微生物进行生物降解,以及固体分离,其中将经处理的流出物与悬浮固体和负责降解的微生物分离。MBR确保生产高质量的废水,因为可以保持高浓度的微生物;这具有进一步的潜在优势,即使在较低的操作温度下也可以进行废水处理。膜的使用还可以保留已经适应特定废水类型的物种,包括那些含有持久性污染物的物种,否则这些物种将不容易降解。很明显,膜系统是废水处理中最有前途的技术之一。由于能够在高渗透流速下工作的膜的开发以及更紧凑、更便宜和可更换的膜组件的生产,MBR在好氧处理中的应用正在增加。然而,尽管有这些进步,膜技术也有几个重要的缺点,阻碍了其更广泛的应用。主要问题是投资和运行成本:这两者都与操作问题密切相关,例如膜污染,这限制了可以实现的最大流速。减少膜污染的方法包括气体再循环和反冲洗,这两种方法都消耗大量的能量,减少了厌氧系统的潜在能量增益。气体冲刷也不是完全有效的,并且可能需要周期性地将膜从反应器移除以进行化学清洁。这对操作成本有影响,并且化学试剂的连续使用可能影响膜的寿命和分离效率,使得非常希望减少这种类型的清洁的频率。因此,当前研究的一个关键方面是开发和测试膜清洁的替代方法。由南安普顿大学进行的这项工作将专门研究使用专门设计的载体颗粒,这些颗粒促进微生物生物量的生长,同时还提供温和的研磨清洁作用。这将与低强度超声波的应用相结合,该应用基于该大学开发的StarStream技术,该技术已经赢得了一系列重大创新奖项。StarStream在低压水流中使用低强度超声波和微气泡,可有效清洁各种表面和污垢类型。这两种方法的组合可以对反应器性能具有协同效应,从而允许以较低的能量使用实现较高的通量率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Banks其他文献

An investigation into the microbial clogging potential of selected filter media as a result of biodegradation of a high-strength sulphate-rich alkaline leachate
  • DOI:
    10.1007/s10532-005-9012-z
  • 发表时间:
    2006-02-14
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Zhengjian Wang;Charles Banks
  • 通讯作者:
    Charles Banks
RAP proteins regulate apicoplast noncoding RNA processing in emPlasmodium falciparum/em
RAP 蛋白调节恶性疟原虫顶复器非编码 RNA 加工
  • DOI:
    10.1016/j.celrep.2025.115928
  • 发表时间:
    2025-07-22
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Thomas Hollin;Zeinab Chahine;Steven Abel;Charles Banks;Charisse Flerida A. Pasaje;Todd Lenz;Jacques Prudhomme;Caitlyn Marie Ybanez;Anahita S. Abbaszadeh;Jacquin C. Niles;Laurence Florens;Karine G. Le Roch
  • 通讯作者:
    Karine G. Le Roch

Charles Banks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Banks', 18)}}的其他基金

Reducing contamination risk and increasing yields in the production of platform sugars from UK MSW
降低英国城市固体废弃物生产平台糖的污染风险并提高产量
  • 批准号:
    BB/N023854/1
  • 财政年份:
    2016
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
Biomethanisation of CO2 in anaerobic digestion plants
厌氧消化装置中二氧化碳的生物甲烷化
  • 批准号:
    EP/M028208/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
Anaerobic Digestion Network
厌氧消化网络
  • 批准号:
    BB/L013835/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
Biogas production from high volume industrial effluents at ambient temperatures (AmbiGAS)
在常温下利用大量工业废水生产沼气 (AmbiGAS)
  • 批准号:
    BB/L000024/1
  • 财政年份:
    2013
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
Integrated systems for farm diversification into energy production by anaerobic digestion: implications for rural development, land use & environment
通过厌氧消化将农场多样化转化为能源生产的综合系统:对农村发展、土地利用的影响
  • 批准号:
    ES/E010989/1
  • 财政年份:
    2007
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant

相似海外基金

NWaste2H2- H2 Production by Reforming Bio-methane with Nitrogen Rich Waste Streams
NWaste2H2- 利用富氮废物流重整生物甲烷生产 H2
  • 批准号:
    EP/R00076X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
SeaGas : Production of bio-methane from seaweed by Anaerobic Digestion (AD)
SeaGas:通过厌氧消化 (AD) 从海藻中生产生物甲烷
  • 批准号:
    102298
  • 财政年份:
    2015
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Collaborative R&D
SeaGas : Production of bio-methane from seaweed by Anaerobic Digestion (AD)
SeaGas:通过厌氧消化 (AD) 从海藻中生产生物甲烷
  • 批准号:
    BB/M028577/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
SeaGas : Production of bio-methane from seaweed by Anaerobic Digestion (AD)
SeaGas:通过厌氧消化 (AD) 从海藻中生产生物甲烷
  • 批准号:
    BB/M028690/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grant
BTEX Contaminated Groundwater Remediation by Bio-Electrochemical Systems
生物电化学系统修复受苯系物污染的地下水
  • 批准号:
    8781940
  • 财政年份:
    2014
  • 资助金额:
    $ 40.26万
  • 项目类别:
Hydrogen production from bio-methane and bio-ethanol in catalytic membrane reactors
在催化膜反应器中利用生物甲烷和生物乙醇生产氢气
  • 批准号:
    232172514
  • 财政年份:
    2013
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Research Grants
CO2 and H2S fixation and clean bio-methane production using a photoreactor process
使用光反应器工艺固定 CO2 和 H2S 并清洁生物甲烷生产
  • 批准号:
    25740056
  • 财政年份:
    2013
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Ethanol and methane production from biomass and phenols extraction from bio-oils using supercritical fluids
使用超临界流体从生物质中生产乙醇和甲烷,并从生物油中提取酚
  • 批准号:
    350686-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Strategic Projects - Group
Ethanol and methane production from biomass and phenols extraction from bio-oils using supercritical fluids
使用超临界流体从生物质中生产乙醇和甲烷,并从生物油中提取酚
  • 批准号:
    350686-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Strategic Projects - Group
Ethanol and methane production from biomass and phenols extraction from bio-oils using supercritical fluids
使用超临界流体从生物质中生产乙醇和甲烷,并从生物油中提取酚
  • 批准号:
    350686-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 40.26万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了