Enabling synthetic biology with an expanded library of engineered orthogonal genetic logic gates and switches

通过扩展的工程正交遗传逻辑门和开关库实现合成生物学

基本信息

  • 批准号:
    BB/N007212/1
  • 负责人:
  • 金额:
    $ 44.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardised and interchangeable parts to program cellular behaviour. However, unlike electronic digital circuits, the components in a biological circuit are not connected by wires with physical insulation, and the flow of biological information has to depend on their specific chemical interactions to avoid cross talk. As a result, the same genetic part may not be used twice in one integrated system to prevent the potential unintended interactions between them. Therefore, orthogonal parts and modules are necessary for the compatibility and scalable design of large gene circuits comprising many components. Orthogonality implies that the newly added parts and modules should not cross-talk with those present in the engineered biological systems as well as the host genetic background. Most of the gene circuits constructed so far are small scale systems that have been constructed by costly and inefficient 'trial-and-error' methods with very limited parts. For example, it has taken almost 12 years to progress from the first 3-gene toggle switch to the so far largest constructed 11-gene 4-input AND logic gate in a single cell. A hard truth behind this slowness is that the engineering of complex circuits in living cells is currently limited by the availability of well-characterised and orthogonal (non cross-talk) genetic regulatory building blocks. Hence, an urgent need in synthetic biology is to expand the currently limited toolbox of biological parts with many functional orthogonal elements to scale up our capacity for building large and complex circuits.Nevertheless, it remains a big foundational challenge to expand the range of available orthogonal components in the synthetic biology toolbox. This project aims to address this challenge by developing two novel scalable tools to engineer an expanded library of versatile orthogonal genetic building blocks. In particular, we will build a library of modular and orthogonal genetic NAND and NOR logic gates; these are universal logic gates and their combinations can be used to accomplish any arbitrary complex Boolean logic operations, providing a powerful scalable method for cellular process control. Further, we will create multi-layer genetic programs from different permutations of these engineered logic gates to demonstrate the potential for composing high-order signal processing and transcriptional control functions in a single cell. For example, the engineered genetic programs will be used to implement a high level logic computing device - 1 bit full adder that intake three chemical inputs in specified logic manners to produce two optical outputs. In addition, we will demonstrate that large complex transcriptional control programs can be implemented in a microbial cell factory to precisely and rapidly tune gene expression profiles within the biosynthesis pathway of a high value chemical (violacein).The engineered scalable tools from this study will increase significantly the number of orthogonal control elements, gates and wires in the limited toolbox of synthetic biology, leading to large-scale complex genetic control programs attainable to program advanced behaviours in cells. The successful outcome will lead to a number of applications expected in the biotechnology industry (high gain), and will be of enormous benefit to researchers not only in the synthetic biology and but also in bioengineering communities and those in the biotechnology industry.
合成生物学的一个重要目标是使用标准化和可互换的部件来编程细胞行为的合成基因电路的合理设计和可预测的实施。然而,与电子数字电路不同,生物电路中的组件不是通过具有物理绝缘的电线连接的,生物信息的流动必须依赖于它们特定的化学相互作用以避免串扰。因此,同一个基因部分不能在一个集成系统中使用两次,以防止它们之间潜在的非预期相互作用。因此,正交的部件和模块是必要的兼容性和可扩展的设计,包括许多组件的大型基因电路。同源性意味着新添加的部分和模块不应与工程化生物系统中存在的部分和模块以及宿主遗传背景相互干扰。迄今为止,大多数构建的基因电路都是小规模的系统,它们是通过成本高昂且效率低下的“试错”方法构建的,部件非常有限。例如,从第一个3基因切换开关到迄今为止在单个细胞中构建的最大的11个基因4输入AND逻辑门已经花费了近12年的时间。这种缓慢背后的一个残酷事实是,活细胞中复杂电路的工程目前受到良好表征和正交(非串扰)遗传调控构建模块的可用性的限制。因此,合成生物学迫切需要用许多功能正交元件来扩展目前有限的生物部件工具箱,以扩大我们构建大型复杂电路的能力。然而,在合成生物学工具箱中扩展可用正交元件的范围仍然是一个很大的基础挑战。该项目旨在通过开发两种新的可扩展工具来解决这一挑战,以设计一个扩展的通用正交遗传构建块库。特别是,我们将建立一个模块化和正交遗传NAND和NOR逻辑门库;这些是通用逻辑门,它们的组合可用于完成任何复杂的布尔逻辑运算,为细胞过程控制提供强大的可扩展方法。此外,我们将从这些工程逻辑门的不同排列中创建多层遗传程序,以展示在单个细胞中组成高阶信号处理和转录控制功能的潜力。例如,工程遗传程序将用于实现高级逻辑计算设备- 1位全加器,其以指定的逻辑方式摄取三个化学输入以产生两个光学输出。此外,我们将证明,大型复杂的转录控制程序可以在微生物细胞工厂中实现,以精确和快速地调整高价值化学品生物合成途径中的基因表达谱来自本研究的工程化可扩展工具将显著增加合成生物学的有限工具箱中的正交控制元件、门和线的数量,从而导致可实现的大规模复杂遗传控制程序,以编程细胞中的高级行为。成功的结果将导致生物技术行业(高增益)预期的许多应用,不仅对合成生物学研究人员,而且对生物工程界和生物技术行业的研究人员都有巨大的好处。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Front Cover: Synthetic Biology Enables Programmable Cell-Based Biosensors (ChemPhysChem 2/2020)
封面:合成生物学使可编程的基于细胞的生物传感器成为可能 (ChemPhysChem 2/2020)
  • DOI:
    10.1002/cphc.201901192
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Hicks M
  • 通讯作者:
    Hicks M
A Novel Eukaryote-Like CRISPR Activation Tool in Bacteria: Features and Capabilities
  • DOI:
    10.1002/bies.201900252
  • 发表时间:
    2020-04-20
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Liu, Yang;Wang, Baojun
  • 通讯作者:
    Wang, Baojun
A systematic approach to inserting split inteins for Boolean logic gate engineering and basal activity reduction.
  • DOI:
    10.1038/s41467-021-22404-9
  • 发表时间:
    2021-04-13
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ho TYH;Shao A;Lu Z;Savilahti H;Menolascina F;Wang L;Dalchau N;Wang B
  • 通讯作者:
    Wang B
Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria
  • DOI:
    10.1038/s41467-019-11479-0
  • 发表时间:
    2019-08-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Liu, Yang;Wan, Xinyi;Wang, Baojun
  • 通讯作者:
    Wang, Baojun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baojun Wang其他文献

Insight Into the Effect of CuNi(111) and FeNi(111) Surface Structure and Second Metal Composition on Surface Carbon Elimination by O or OH: A Comparison Study with Ni(111) Surface
深入探讨 CuNi(111) 和 FeNi(111) 表面结构和第二金属成分对 O 或 OH 表面消碳的影响:与 Ni(111) 表面的比较研究
  • DOI:
    10.1021/acs.jpcc.5b03868
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Riguang Zhang;Xiaoqiang Guo;Baojun Wang;Lixia Ling
  • 通讯作者:
    Lixia Ling
Improved Target Method for AF-MPDT Thrust Measurement IEPC-2015-172
改进的 AF-MPDT 推力测量目标方法 IEPC-2015-172
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baojun Wang;Hai;Wenjiang Yang;M. Kong;Yujie Xu
  • 通讯作者:
    Yujie Xu
Microfluidic Sterilization
微流控灭菌
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Jie Huang;Baojun Wang;Wei Wang;Haixia Zhang
  • 通讯作者:
    Haixia Zhang
Syngas Conversion to C2 Oxygenates over Cu/β-Mo2C Catalyst: Probing into the Effect of the Interface between Cu and β-Mo2C on Catalytic Performance
Cu/β-Mo2C 催化剂上合成气转化为 C2 氧气:探讨 Cu 和 β-Mo2C 之间的界面对催化性能的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riguang Zhang;Cong Wei;Weisheng Guo;Zhiqin Li;Baojun Wang;Lixia Ling;Debao Li
  • 通讯作者:
    Debao Li
New porcine model for training for laparoscopic ureteral reimplantation with horn of uterus to mimic enlarged ureter.
用于训练腹腔镜输尿管再植入的新猪模型,用子宫角模拟扩大的输尿管。
  • DOI:
    10.1089/end.2009.0148
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xing Ai;Baojun Wang;Zhun Wu;Guo;Zheng;T. Shi;Bin Fu;Hong;Xin Ma;Xu Zhang
  • 通讯作者:
    Xu Zhang

Baojun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baojun Wang', 18)}}的其他基金

Engineering orthogonal split inteins as scalable tools for synthetic biology and biomanufacturing
将正交分裂内含子工程化为合成生物学和生物制造的可扩展工具
  • 批准号:
    MR/S018875/1
  • 财政年份:
    2019
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Fellowship

相似国自然基金

近空间飞行器载MIMO SAR高分辨率、宽测绘带遥感成像机理与方法
  • 批准号:
    41101317
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于大机动运动平台的特定目标多极化成像与匹配技术研究
  • 批准号:
    11176022
  • 批准年份:
    2011
  • 资助金额:
    46.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
  • 批准号:
    2412586
  • 财政年份:
    2024
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Standard Grant
Applying synthetic biology to the development of in vivo technologies for the monitoring and control of vector-borne diseases.
应用合成生物学来开发用于监测和控制媒介传播疾病的体内技术。
  • 批准号:
    BB/Y008340/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Research Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Standard Grant
Conference: 2024 Synthetic Biology: Engineering, Evolution and Design (SEED) Conference
会议:2024年合成生物学:工程、进化和设计(SEED)会议
  • 批准号:
    2413726
  • 财政年份:
    2024
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Standard Grant
CAREER: Synthetic Biology to Understand and Harness Plant Enzyme Complexes for Natural Product Synthesis in Yeast
职业:合成生物学,了解和利用植物酶复合物在酵母中合成天然产物
  • 批准号:
    2338009
  • 财政年份:
    2024
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Continuing Grant
A synthetic biology approach to unlocking the role of the ribosome in cell competition
揭示核糖体在细胞竞争中的作用的合成生物学方法
  • 批准号:
    489621
  • 财政年份:
    2023
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Operating Grants
Synthetic biology approaches to construct metal analogues of vitamin B12 to act as anti-microbial and imaging agents for health applications.
利用合成生物学方法构建维生素 B12 的金属类似物,作为健康应用的抗菌剂和显像剂。
  • 批准号:
    2881504
  • 财政年份:
    2023
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Studentship
A UK-Japan partnership for synergising synthetic biology with systems biology.
英国-日本合作伙伴关系,旨在协同合成生物学与系统生物学。
  • 批准号:
    BB/X018318/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Research Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Standard Grant
Conference: 2023 Mammalian Synthetic Biology Workshop
会议:2023哺乳动物合成生物学研讨会
  • 批准号:
    2330030
  • 财政年份:
    2023
  • 资助金额:
    $ 44.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了