Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation

NSF/BIO-BBSRC 双边合成植物微室以增强碳固定

基本信息

  • 批准号:
    BB/N016009/1
  • 负责人:
  • 金额:
    $ 61.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Global demand for food and fuel is steadily increasing, while gains in yield of many major food crops through traditional breeding have leveled off in recent years. The natural variation that has been the source of substantial crop improvement is becoming exhausted, so that new efforts, including input from synthetic biology will be needed to improve photosynthetic efficiency. More than 90% of biomass is derived directly from photosynthetic products. The properties of the carbon-fixing enzyme Rubisco (ribulose-1:5-bisphosphate carboxylase/oxygenase) limit the efficiency of photosynthesis in land plants. Rubisco can catalyze the combination of RuBP (ribulose-1,5-bisphophate) with CO2, but also can catalyze the reaction of RuBP with oxygen, leading to photorespiration, a process in which previously fixed CO2 is lost. Cyanobacteria and some land plants have evolved to deal with an increase of oxygen in the atmosphere by developing mechanisms that concentrate CO2 near Rubisco. However, many of the globally important crop plants lack this ability; instead, they utilise Rubisco enzymes that have higher CO2 affinity but are slower than Rubisco enzymes in plants with carbon-concentrating mechanisms such as maize. Consequently, these plants must devote considerable amounts of protein, and thereby, nitrogen, to allow Rubisco to carry out adequate amounts of carbon fixation, reducing yield and biomass production.One of the outstanding millenial goals is to find ways to improve photosynthetic yields for enhanced biomass production. Replacing endogenous Rubisco with a faster enzyme with less CO2 specificity, along with a carbon concentrating mechanism, is one way to significantly improve CO2 fixation, according to published computational models. We propose to undertake work to this end. We will install a novel cyanobacterial-based carbon-concentrating mechanism in a land plant chloroplast and provide the necessary molecular machinery to facilitate its operation. Regulatory modules will be produced to express components of the cyanobacterial carboxysome from the chloroplast genome and chloroplast membrane-targeted bicarbonate pumps from the nuclear genome. As a proof of principle, this work will be carried out in tobacco, a species in which chloroplast transformants can be most rapidly obtained. We have already established the ground work for this engineering feat, demonstrating that several of the components can be introduced; for example, to generate novel microcompartments within the tobacco chloroplast. We expect the knowledge gained from the project will inform subsequent efforts to enhance photosynthesis in other species, for example by introducing synthetic microcompartments into species such as soybean, in which technology is already available for chloroplast and nuclear transformation. Knowledge will be gained through biochemical and microscopic studies, for example about the effect of stoichiometry of cyanobacterial proteins on microcompartment size, morphology, and function in carbon concentration and photosynthesis. We will examine features of the gene regulatory sequences on the synthetic chloroplast operons needed to express proteins in the amounts and ratios needed for assembly of microcompartments. We expect the findings to be valuable also for future projects and additions of other capabilities to plants by synthesis of artificial microcompartments.
全球对粮食和燃料的需求正在稳步增长,而近年来通过传统育种获得的许多主要粮食作物的产量增长已经趋于平稳。自然变异一直是大幅改善作物的源泉,但它正在枯竭,因此需要新的努力,包括合成生物学的投入,以提高光合效率。超过90%的生物质直接来自光合产物。固碳酶Rubisco(核酮糖-1:5-二磷酸羧化酶/加氧酶)的性质限制了陆地植物光合作用的效率。Rubisco可以催化RuBP(核酮糖-1,5-二磷酸盐)与CO2的结合,但也可以催化RuBP与氧气的反应,导致光呼吸,这是一个失去先前固定的CO2的过程。蓝细菌和一些陆地植物已经进化到通过发展将CO2聚集在Rubisco附近的机制来处理大气中氧气的增加。然而,许多全球重要的作物植物缺乏这种能力;相反,它们利用具有更高CO2亲和力但比具有碳浓缩机制的植物(如玉米)中的Rubisco酶慢的Rubisco酶。因此,这些植物必须投入大量的蛋白质,从而氮,使Rubisco进行足够量的碳固定,减少产量和生物质生产。根据已发表的计算模型,用具有较低CO2特异性的更快的酶代替内源性Rubisco,沿着碳浓缩机制,是显著改善CO2固定的一种方法。我们建议为此开展工作。我们将在陆地植物叶绿体中安装一种新的基于蓝藻的碳浓缩机制,并提供必要的分子机制以促进其运作。将产生调控模块以表达来自叶绿体基因组的蓝藻羧基体的组分和来自核基因组的叶绿体膜靶向碳酸氢盐泵。作为原理的证明,这项工作将在烟草中进行,烟草是一种可以最快获得叶绿体转化体的物种。我们已经为这项工程壮举建立了基础工作,证明可以引入几种成分;例如,在烟草叶绿体内产生新的微区室。我们希望从该项目中获得的知识将为随后在其他物种中增强光合作用的努力提供信息,例如通过将合成微区室引入大豆等物种,其中技术已经可用于叶绿体和核转化。知识将通过生物化学和微观研究获得,例如关于蓝藻蛋白质的化学计量对微区室大小,形态和碳浓度和光合作用功能的影响。我们将研究合成叶绿体操纵子上的基因调控序列的特征,这些操纵子需要以组装微区室所需的量和比例表达蛋白质。我们希望这些发现对未来的项目和通过合成人工微区室来增加植物的其他能力也有价值。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards engineering carboxysomes into C3 plants.
Hybrid Cyanobacterial-Tobacco Rubisco Supports Autotrophic Growth and Procarboxysomal Aggregation
杂交蓝藻-烟草 Rubisco 支持自养生长和原羧基体聚集
  • DOI:
    10.1104/pp.19.01193
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Orr, Douglas J.;Worrall, Dawn;Lin, Myat T.;Carmo-Silva, Elizabete;Hanson, Maureen R.;Parry, Martin A. J.
  • 通讯作者:
    Parry, Martin A. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Parry其他文献

The LMA for the application of postoperative CPAP

Martin Parry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Parry', 18)}}的其他基金

Argentina - UK partnership to improve wheat grain quality
阿根廷-英国合作提高小麦籽粒质量
  • 批准号:
    BB/T020113/1
  • 财政年份:
    2020
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Rice Research Newton Fund: Exploiting a Cyanobacterial CO2 Concentrating Mechanism to Increase Photosynthesis and Yield in Rice
水稻研究牛顿基金:利用蓝藻二氧化碳浓缩机制提高水稻的光合作用和产量
  • 批准号:
    BB/N013662/1
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
BBSRC Embrapa - Exploiting new technologies to improve drought resilience in wheat
BBSRC Embrapa - 利用新技术提高小麦的抗旱能力
  • 批准号:
    BB/N004485/1
  • 财政年份:
    2015
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Brazil-UK Collaboration on Technologies for Wheat Improvement
巴西-英国小麦改良技术合作
  • 批准号:
    BB/J020079/2
  • 财政年份:
    2015
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Brazil-UK Collaboration on Technologies for Wheat Improvement
巴西-英国小麦改良技术合作
  • 批准号:
    BB/J020079/1
  • 财政年份:
    2012
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Manipulation of photosynthetic carbon metabolism in wheat to improve yield
调控小麦光合碳代谢以提高产量
  • 批准号:
    BB/I017372/1
  • 财政年份:
    2012
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Collaborative Research: Exploiting prokaryotic proteins to improve plant photosynthetic efficiency (EPP)
合作研究:利用原核蛋白提高植物光合效率(EPP)
  • 批准号:
    BB/I024488/1
  • 财政年份:
    2011
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Doctoral Training Grant
博士培训补助金
  • 批准号:
    BB/F016824/1
  • 财政年份:
    2009
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Training Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
    31981220281
  • 批准年份:
    2019
  • 资助金额:
    2.3 万元
  • 项目类别:
    国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2.6 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
    81981220037
  • 批准年份:
    2019
  • 资助金额:
    2.1 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1.2 万元
  • 项目类别:
    国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
  • 批准号:
    1917263
  • 财政年份:
    2019
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
  • 批准号:
    2016487
  • 财政年份:
    2019
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
  • 批准号:
    1854685
  • 财政年份:
    2018
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
  • 批准号:
    1758081
  • 财政年份:
    2017
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Continuing Grant
Bilateral NSF/BIO-BBSRC:A Metagenomics Exchange - enriching analysis by synergistic harmonisation of MG-RAST and the EBI Metagenomics Portal
双边 NSF/BIO-BBSRC:宏基因组学交流 - 通过 MG-RAST 和 EBI 宏基因组学门户的协同协调丰富分析
  • 批准号:
    BB/N018354/1
  • 财政年份:
    2017
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Research Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Synthetic Biology for Lignin Utilization
合作研究:双边 BBSRC-NSF/BIO:木质素利用的合成生物学
  • 批准号:
    1614953
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Regulation of plant stomatal aperture by SAUR (Small Auxin Up RNA) proteins
合作研究:双边 BBSRC-NSF/BIO:SAUR(小生长素 Up RNA)蛋白调节植物气孔孔径
  • 批准号:
    1613809
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Continuing Grant
Bilateral BBSRC-NSF/BIO: Causal modeling of T cell signaling in time and space
双边 BBSRC-NSF/BIO:T 细胞信号传导在时间和空间上的因果模型
  • 批准号:
    1616492
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Bilateral NSF/BIO-BBSRC- Remodelling Replication Roadblocks: Regulatory Systems that Integrate DNA Replication, Recombination and Protein Modification
双边 NSF/BIO-BBSRC-重塑复制障碍:整合 DNA 复制、重组和蛋白质修饰的监管系统
  • 批准号:
    1642283
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
  • 批准号:
    1644745
  • 财政年份:
    2016
  • 资助金额:
    $ 61.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了