Mathematical Theory and Biological Applications of Diversity

多样性的数学理论和生物学应用

基本信息

  • 批准号:
    BB/P004202/1
  • 负责人:
  • 金额:
    $ 12.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Diversity is the extent of variation in and between biological systems and encompasses variation from the scale of the molecule to the rainforest. Its influence and therefore assessment is critical to the life sciences, for example:- Genetic diversity is important for the health and productivity of crops and livestock- Immunological diversity is key to host protection from diverse and evolving pathogens- Pathogen diversity informs vaccine and drug development- Diversity in antimicrobial resistance is a serious clinical and drug development problem- Species diversity influences the health and sustainability of ecosystemsHowever, measuring diversity is hampered by the range of potential measures: species richness, Shannon entropy, expected heterozygosity, Gini-Simpson, and Berger-Parker, to name just a few. Often they exist to capture different aspects of diversity - species richness (where 'species' may be any unit e.g. antigenic phenotype, receptor transcript) counts the number of species ignoring abundance, while Berger-Parker assesses the proportion of the dominant species. But fundamental mathematical problems remain: different measures applied to the same aspect of diversity can give conflicting answers. A key test, which many popular measures fail, is whether a measure behaves intuitively. Suppose a meteorite wipes out 50% of the species on a continent of a million equally abundant species. The Shannon entropy drops by 5%, not the expected 50%, and the Gini-Simpson index by just 0.0001%. The measures that do behave intuitively and logically are called 'effective numbers'.Our ability to use effective numbers across diversity measurement crystallised during a BBSRC-funded workshop run and attended by the co-investigators. Using effective numbers, and a major theoretical advance that we have recently developed that allows us to include any kind of similarity between individuals (e.g. genetic, phylogenetic, functional etc.) in the same diversity framework, our long-term goal is to unify the measurement and interpretation of diversity across strategically important areas of the life sciences. During this FLIP award, we aim to set the groundwork for this by working with each other to understand the detail of how the theory and its applications connect. We will train each other in the mathematics of the diversity framework and in the science underpinning the BBSRC-funded biological applications that use diversity, respectively, bridging the gap across the mathematics - life sciences interface:- One of the developers of the theoretical framework (Leinster) will be taught about the role of the major histocompatibility complex in livestock disease resistance and about quantitative genetics and its application to animal breeding, and work to apply the diversity framework in this context.- The other mathematician (Cobbold) will learn about the measurement of genetic and phylogenetic diversity, and its application to measuring viral circulation for foot-and-mouth disease (FMD) epidemiology. Building on this, she will explore how antigenic diversity measurement can help in vaccine seed strain selection for FMD control.- The applied scientist (Reeve) will learn the pure mathematics that underpins the diversity framework, working on information theory, functional equations and category theory, and then identify how this work will apply to ongoing research on the ecology of antimicrobial resistance (AMR) on which he collaborates with Matthews. He will then work on identifying developments to the theory that will help in the study of the sources and spread of AMR.As well as enhancing the existing BBSRC-funded research of Reeve, Matthews and their collaborators, we will investigate the potential for this approach to unite research areas that have not previously been considered to be closely related, and to foster a powerful new, interdisciplinary research area in the field of diversity.
多样性是生物系统内部和之间的变化程度,包括从分子到雨林的变化。它的影响和评估对生命科学至关重要,例如:-遗传多样性对作物和牲畜的健康和生产力很重要-免疫多样性是保护宿主免受各种不断变化的病原体侵害的关键-病原体多样性为疫苗和药物开发提供信息-抗菌素耐药性的多样性是一个严重的临床和药物开发问题-物种多样性影响生态系统的健康和可持续性然而,衡量多样性受到一系列潜在措施的阻碍:物种丰富度、香农熵、期望杂合性、Gini-Simpson和Berger-Parker,仅举几例。它们的存在通常是为了捕捉多样性的不同方面-物种丰富度(其中“物种”可以是任何单位,例如抗原表型,受体转录)计算物种的数量,忽略丰度,而Berger-Parker评估优势物种的比例。但基本的数学问题仍然存在:不同的措施适用于同一方面的多样性可能会给出相互矛盾的答案。一个关键的测试,许多流行的措施失败,是一个措施是否直观的行为。假设一颗陨石毁灭了一个拥有100万同样丰富物种的大陆上50%的物种。香农熵下降了5%,而不是预期的50%,吉尼-辛普森指数仅下降了0.0001%。直观和合乎逻辑的衡量标准被称为“有效数字”。我们在多样性衡量中使用有效数字的能力在BBSRC资助的研讨会上得到了体现,并由共同研究者参加。使用有效数字,以及我们最近开发的一个重大理论进展,使我们能够包括个体之间的任何类型的相似性(例如遗传,系统发育,功能等)。在同样的多样性框架内,我们的长期目标是统一生命科学各重要战略领域多样性的衡量和解释。在这个FLIP奖期间,我们的目标是通过相互合作来了解理论及其应用如何连接的细节,从而为此奠定基础。我们将在多样性框架的数学和支持使用多样性的BBSRC资助的生物学应用的科学方面相互培训,分别弥合数学-生命科学接口的差距:-理论框架的开发者之一(Leinster)将被教导有关主要组织相容性复合体在家畜抗病性中的作用以及定量遗传学及其在动物育种中的应用,并致力于在这种情况下应用多样性框架。另一位数学家(Cobbold)将学习遗传和系统发育多样性的测量,及其在口蹄疫(FMD)流行病学中测量病毒循环的应用。在此基础上,她将探索抗原多样性测量如何帮助FMD控制的疫苗种子株选择。应用科学家(里夫)将学习支持多样性框架的纯数学,研究信息论,函数方程和范畴理论,然后确定这项工作将如何应用于正在进行的抗菌素耐药性(AMR)生态学研究,他与马修斯合作。然后,他将致力于确定该理论的发展,这将有助于研究AMR的来源和传播。除了加强现有的BBSRC资助的研究里夫,马修斯和他们的合作者,我们将调查这种方法的潜力,以团结研究领域,以前没有被认为是密切相关的,并培养一个强大的新的,多样性领域的跨学科研究领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving the identification of antigenic sites in the H1N1 Influenza virus through accounting for the experimental structure in a sparse hierarchical Bayesian model
通过考虑稀疏分层贝叶斯模型中的实验结构来改进 H1N1 流感病毒抗原位点的识别
  • DOI:
    10.48550/arxiv.1710.06366
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davies V
  • 通讯作者:
    Davies V
Antimicrobial Use and Veterinary Care among Agro-Pastoralists in Northern Tanzania.
坦桑尼亚北部的农业养护者之间的抗菌使用和兽医护理。
  • DOI:
    10.1371/journal.pone.0170328
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Caudell MA;Quinlan MB;Subbiah M;Call DR;Roulette CJ;Roulette JW;Roth A;Matthews L;Quinlan RJ
  • 通讯作者:
    Quinlan RJ
Additional file 1: of Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK
附加文件 1:通过整合数学模型和每日经验人口数据揭示蚊子季节性背后的机制:英国的淡色库蚊
  • DOI:
    10.6084/m9.figshare.7693340
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ewing D
  • 通讯作者:
    Ewing D
Electronic supplementary material - additional text, figures and tables from Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses.
电子补充材料 - 来自不断变化的环境和遗传变异的附加文本、图形和表格:近亲繁殖的自然变异不会损害短期生理反应。
  • DOI:
    10.6084/m9.figshare.10255802
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buckley J
  • 通讯作者:
    Buckley J
Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK
  • DOI:
    10.1186/s13071-019-3321-2
  • 发表时间:
    2019-02-07
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ewing, David A.;Purse, Bethan V.;White, Steven M.
  • 通讯作者:
    White, Steven M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Reeve其他文献

Facilitating Problem Framing in Project-Based Learning
促进基于项目的学习中的问题框架
1980s–2010s: The world's largest mangrove ecosystem is becoming homogeneous
  • DOI:
    10.1016/j.biocon.2019.05.011
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Swapan Kumar Sarker;Jason Matthiopoulos;Sonia N. Mitchell;Zahir Uddin Ahmed;Md. Bashirul Al Mamun;Richard Reeve
  • 通讯作者:
    Richard Reeve
Paradoxical pulse—revisited
  • DOI:
    10.1016/s0002-8703(76)80412-7
  • 发表时间:
    1976-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Reeve;F. Joan Sakai Reeve;T.K. Lin
  • 通讯作者:
    T.K. Lin

Richard Reeve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Reeve', 18)}}的其他基金

Open Epidemiology for pandemic modelling: a transparent, traceable, reusable, open source pipeline for reproducible science
用于大流行病建模的开放流行病学:用于可重复科学的透明、可追踪、可重用、开源管道
  • 批准号:
    ST/V006126/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant
Simulating UK plant biodiversity under climate change to aid landscape decision making
模拟气候变化下的英国植物生物多样性以帮助景观决策
  • 批准号:
    NE/T010355/1
  • 财政年份:
    2020
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant
The interplay of land-use, climate and plant biodiversity on the UK stage
英国舞台上土地利用、气候和植物生物多样性的相互作用
  • 批准号:
    NE/T004193/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant
Assessing the impact of foot-and-mouth vaccination programs
评估口蹄疫疫苗接种计划的影响
  • 批准号:
    BB/K021400/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant
The Mathematics of Biodiversity
生物多样性的数学
  • 批准号:
    BB/J020567/1
  • 财政年份:
    2012
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Theory and Simulation of Local Electroneutrality and Ion Atmospheres in Biological Systems
生物系统中局域电中性和离子气氛的理论与模拟
  • 批准号:
    10736494
  • 财政年份:
    2023
  • 资助金额:
    $ 12.82万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Research Grant
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2022
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Discovery Grants Program - Individual
Biophysics of biological transport and signaling "nanomachines": from theory to applications
生物运输和信号传导“纳米机器”的生物物理学:从理论到应用
  • 批准号:
    RGPIN-2022-04909
  • 财政年份:
    2022
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2021
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Discovery Grants Program - Individual
URoL:EN: Towards a unified theory of regulatory functions and networks across biological and social systems
URoL:EN:迈向跨生物和社会系统的监管功能和网络的统一理论
  • 批准号:
    2133863
  • 财政年份:
    2021
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Continuing Grant
Integrating engineering theory and biological measures to model stress resilience, damage, and fitness-related consequences
整合工程理论和生物测量来模拟压力恢复、损伤和健康相关后果
  • 批准号:
    2015802
  • 财政年份:
    2020
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Continuing Grant
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2020
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Discovery Grants Program - Individual
Peer Treatment across the Transition to Kindergarten: A test of Biological Sensitivity to Context Theory
幼儿园过渡期间的同伴待遇:对情境理论的生物敏感性测试
  • 批准号:
    1939393
  • 财政年份:
    2020
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Standard Grant
Development of electron transfer dynamics theory of biological systems highly incorporating solvent response
高度结合溶剂响应的生物系统电子转移动力学理论的发展
  • 批准号:
    19H02677
  • 财政年份:
    2019
  • 资助金额:
    $ 12.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了